Aurélie Bergon
Aix-Marseille University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Aurélie Bergon.
Genes & Development | 2013
Emilie Montellier; Faycxal Boussouar; Sophie Rousseaux; Kai Zhang; Thierry Buchou; Francxois Fenaille; Hitoshi Shiota; Alexandra Debernardi; Patrick Héry; Sandrine Curtet; Mahya Jamshidikia; Sophie Barral; Hélène Holota; Aurélie Bergon; Fabrice Lopez; Philippe Guardiola; Karin Pernet; Jean Imbert; Carlo Petosa; Minjia Tan; Yingming Zhao; Matthieu Gérard; Saadi Khochbin
The conversion of male germ cell chromatin to a nucleoprotamine structure is fundamental to the life cycle, yet the underlying molecular details remain obscure. Here we show that an essential step is the genome-wide incorporation of TH2B, a histone H2B variant of hitherto unknown function. Using mouse models in which TH2B is depleted or C-terminally modified, we show that TH2B directs the final transformation of dissociating nucleosomes into protamine-packed structures. Depletion of TH2B induces compensatory mechanisms that permit histone removal by up-regulating H2B and programming nucleosome instability through targeted histone modifications, including lysine crotonylation and arginine methylation. Furthermore, after fertilization, TH2B reassembles onto the male genome during protamine-to-histone exchange. Thus, TH2B is a unique histone variant that plays a key role in the histone-to-protamine packing of the male genome and guides genome-wide chromatin transitions that both precede and follow transmission of the male genome to the egg.
Translational Psychiatry | 2012
Raoul Belzeaux; Aurélie Bergon; Valérie Jeanjean; Béatrice Loriod; Christine Formisano-Tréziny; Lore Verrier; Anderson Loundou; Karine Baumstarck-Barrau; Laurent Boyer; Valérie Gall; Jean Gabert; Catherine Nguyen; Jean-Michel Azorin; Jean Naudin; El Chérif Ibrahim
To date, it remains impossible to guarantee that short-term treatment given to a patient suffering from a major depressive episode (MDE) will improve long-term efficacy. Objective biological measurements and biomarkers that could help in predicting the clinical evolution of MDE are still warranted. To better understand the reason nearly half of MDE patients respond poorly to current antidepressive treatments, we examined the gene expression profile of peripheral blood samples collected from 16 severe MDE patients and 13 matched controls. Using a naturalistic and longitudinal design, we ascertained mRNA and microRNA (miRNA) expression at baseline, 2 and 8 weeks later. On a genome-wide scale, we detected transcripts with roles in various biological processes as significantly dysregulated between MDE patients and controls, notably those involved in nucleotide binding and chromatin assembly. We also established putative interactions between dysregulated mRNAs and miRNAs that may contribute to MDE physiopathology. We selected a set of mRNA candidates for quantitative reverse transcriptase PCR (RT-qPCR) to validate that the transcriptional signatures observed in responders is different from nonresponders. Furthermore, we identified a combination of four mRNAs (PPT1, TNF, IL1B and HIST1H1E) that could be predictive of treatment response. Altogether, these results highlight the importance of studies investigating the tight relationship between peripheral transcriptional changes and the dynamic clinical progression of MDE patients to provide biomarkers of MDE evolution and prognosis.
BMC Genomics | 2013
Cyrille Lepoivre; Mohamed Belhocine; Aurélie Bergon; Aurélien Griffon; Miriam Yammine; Joaquin Zacarias-Cabeza; Marc-Antoine Garibal; Frederic Koch; Muhammad Ahmad Maqbool; Romain Fenouil; Béatrice Loriod; Hélène Holota; Marta Gut; Ivo Gut; Jean Imbert; Jean-Christophe Andrau; Denis Puthier; Salvatore Spicuglia
BackgroundDivergent transcription is a wide-spread phenomenon in mammals. For instance, short bidirectional transcripts are a hallmark of active promoters, while longer transcripts can be detected antisense from active genes in conditions where the RNA degradation machinery is inhibited. Moreover, many described long non-coding RNAs (lncRNAs) are transcribed antisense from coding gene promoters. However, the general significance of divergent lncRNA/mRNA gene pair transcription is still poorly understood. Here, we used strand-specific RNA-seq with high sequencing depth to thoroughly identify antisense transcripts from coding gene promoters in primary mouse tissues.ResultsWe found that a substantial fraction of coding-gene promoters sustain divergent transcription of long non-coding RNA (lncRNA)/mRNA gene pairs. Strikingly, upstream antisense transcription is significantly associated with genes related to transcriptional regulation and development. Their promoters share several characteristics with those of transcriptional developmental genes, including very large CpG islands, high degree of conservation and epigenetic regulation in ES cells. In-depth analysis revealed a unique GC skew profile at these promoter regions, while the associated coding genes were found to have large first exons, two genomic features that might enforce bidirectional transcription. Finally, genes associated with antisense transcription harbor specific H3K79me2 epigenetic marking and RNA polymerase II enrichment profiles linked to an intensified rate of early transcriptional elongation.ConclusionsWe concluded that promoters of a class of transcription regulators are characterized by a specialized transcriptional control mechanism, which is directly coupled to relaxed bidirectional transcription.
PLOS ONE | 2010
Stéphanie Devignot; Cédric Sapet; Veasna Duong; Aurélie Bergon; Pascal Rihet; Sivuth Ong; Patrich T. Lorn; Norith Chroeung; Sina Ngeav; Hugues J. Tolou; Philippe Buchy; Patricia Couissinier-Paris
Background Deciphering host responses contributing to dengue shock syndrome (DSS), the life-threatening form of acute viral dengue infections, is required to improve both the differential prognosis and the treatments provided to DSS patients, a challenge for clinicians. Methodology/Principal Findings Based on a prospective study, we analyzed the genome-wide expression profiles of whole blood cells from 48 matched Cambodian children: 19 progressed to DSS while 16 and 13 presented respectively classical dengue fever (DF) or dengue hemorrhagic fever grades I/II (DHF). Using multi-way analysis of variance (ANOVA) and adjustment of p-values to control the False Discovery Rate (FDR<10%), we identified a signature of 2959 genes differentiating DSS patients from both DF and DHF, and showed a strong association of this DSS-gene signature with the dengue disease phenotype. Using a combined approach to analyse the molecular patterns associated with the DSS-gene signature, we provide an integrative overview of the transcriptional responses altered in DSS children. In particular, we show that the transcriptome of DSS children blood cells is characterized by a decreased abundance of transcripts related to T and NK lymphocyte responses and by an increased abundance of anti-inflammatory and repair/remodeling transcripts. We also show that unexpected pro-inflammatory gene patterns at the interface between innate immunity, inflammation and host lipid metabolism, known to play pathogenic roles in acute and chronic inflammatory diseases associated with systemic vascular dysfunction, are transcriptionnally active in the blood cells of DSS children. Conclusions/Significance We provide a global while non exhaustive overview of the molecular mechanisms altered in of DSS children and suggest how they may interact to lead to final vascular homeostasis breakdown. We suggest that some mechanisms identified should be considered putative therapeutic targets or biomarkers of progression to DSS.
PLOS ONE | 2010
Nathalie Boone; Béatrice Loriod; Aurélie Bergon; Oualid Sbai; Christine Formisano-Tréziny; Jean Gabert; Michel Khrestchatisky; Catherine Nguyen; Francois Feron; Felicia B. Axelrod; El Chérif Ibrahim
Background Familial dysautonomia (FD) is a hereditary neuropathy caused by mutations in the IKBKAP gene, the most common of which results in variable tissue-specific mRNA splicing with skipping of exon 20. Defective splicing is especially severe in nervous tissue, leading to incomplete development and progressive degeneration of sensory and autonomic neurons. The specificity of neuron loss in FD is poorly understood due to the lack of an appropriate model system. To better understand and modelize the molecular mechanisms of IKBKAP mRNA splicing, we collected human olfactory ecto-mesenchymal stem cells (hOE-MSC) from FD patients. hOE-MSCs have a pluripotent ability to differentiate into various cell lineages, including neurons and glial cells. Methodology/Principal Findings We confirmed IKBKAP mRNA alternative splicing in FD hOE-MSCs and identified 2 novel spliced isoforms also present in control cells. We observed a significant lower expression of both IKBKAP transcript and IKAP/hELP1 protein in FD cells resulting from the degradation of the transcript isoform skipping exon 20. We localized IKAP/hELP1 in different cell compartments, including the nucleus, which supports multiple roles for that protein. We also investigated cellular pathways altered in FD, at the genome-wide level, and confirmed that cell migration and cytoskeleton reorganization were among the processes altered in FD. Indeed, FD hOE-MSCs exhibit impaired migration compared to control cells. Moreover, we showed that kinetin improved exon 20 inclusion and restores a normal level of IKAP/hELP1 in FD hOE-MSCs. Furthermore, we were able to modify the IKBKAP splicing ratio in FD hOE-MSCs, increasing or reducing the WT (exon 20 inclusion):MU (exon 20 skipping) ratio respectively, either by producing free-floating spheres, or by inducing cells into neural differentiation. Conclusions/Significance hOE-MSCs isolated from FD patients represent a new approach for modeling FD to better understand genetic expression and possible therapeutic approaches. This model could also be applied to other neurological genetic diseases.
PLOS ONE | 2008
Fabrice Lopez; Julien Textoris; Aurélie Bergon; Gilles Didier; Elisabeth Remy; Samuel Granjeaud; Jean Imbert; Catherine Nguyen; Denis Puthier
Background As public microarray repositories are constantly growing, we are facing the challenge of designing strategies to provide productive access to the available data. Methodology We used a modified version of the Markov clustering algorithm to systematically extract clusters of co-regulated genes from hundreds of microarray datasets stored in the Gene Expression Omnibus database (n = 1,484). This approach led to the definition of 18,250 transcriptional signatures (TS) that were tested for functional enrichment using the DAVID knowledgebase. Over-representation of functional terms was found in a large proportion of these TS (84%). We developed a JAVA application, TBrowser that comes with an open plug-in architecture and whose interface implements a highly sophisticated search engine supporting several Boolean operators (http://tagc.univ-mrs.fr/tbrowser/). User can search and analyze TS containing a list of identifiers (gene symbols or AffyIDs) or associated with a set of functional terms. Conclusions/Significance As proof of principle, TBrowser was used to define breast cancer cell specific genes and to detect chromosomal abnormalities in tumors. Finally, taking advantage of our large collection of transcriptional signatures, we constructed a comprehensive map that summarizes gene-gene co-regulations observed through all the experiments performed on HGU133A Affymetrix platform. We provide evidences that this map can extend our knowledge of cellular signaling pathways.
PLOS ONE | 2014
Amira Amrani; Aurélie Bergon; Hélène Holota; C. Tamburini; Marc Garel; Bernard Ollivier; Jean Imbert; Alain Dolla; Nathalie Pradel
RNA-seq was used to study the response of Desulfovibrio hydrothermalis, isolated from a deep-sea hydrothermal chimney on the East-Pacific Rise at a depth of 2,600 m, to various hydrostatic pressure growth conditions. The transcriptomic datasets obtained after growth at 26, 10 and 0.1 MPa identified only 65 differentially expressed genes that were distributed among four main categories: aromatic amino acid and glutamate metabolisms, energy metabolism, signal transduction, and unknown function. The gene expression patterns suggest that D. hydrothermalis uses at least three different adaptation mechanisms, according to a hydrostatic pressure threshold (HPt) that was estimated to be above 10 MPa. Both glutamate and energy metabolism were found to play crucial roles in these mechanisms. Quantitation of the glutamate levels in cells revealed its accumulation at high hydrostatic pressure, suggesting its role as a piezolyte. ATP measurements showed that the energy metabolism of this bacterium is optimized for deep-sea life conditions. This study provides new insights into the molecular mechanisms linked to hydrostatic pressure adaptation in sulfate-reducing bacteria.
Human Mutation | 2012
Nathalie Boone; Aurélie Bergon; Béatrice Loriod; Arnaud Devèze; Catherine Nguyen; Felicia B. Axelrod; El Chérif Ibrahim
Familial dysautonomia (FD) is a rare inherited neurodegenerative disorder. The most common mutation is a c.2204+6T>C transition in the 5′ splice site (5′ss) of IKBKAP intron 20, which causes a tissue‐specific skipping of exon 20, resulting in lower synthesis of IKAP/hELP1 protein. To better understand the specificity of neuron loss in FD, we modeled the molecular mechanisms of IKBKAP mRNA splicing by studying human olfactory ecto‐mesenchymal stem cells (hOE‐MSCs) derived from FD patient nasal biopsies. We explored how the modulation of IKBKAP mRNA alternative splicing impacts the transcriptome at the genome‐wide level. We found that the FD transcriptional signature was highly associated with biological functions related to the development of the nervous system. In addition, we identified target genes of kinetin, a plant cytokinin that corrects IKBKAP mRNA splicing and increases the expression of IKAP/hELP1. We identified this compound as a putative regulator of splicing factors and added new evidence for a sequence‐specific correction of splicing. In conclusion, hOE‐MSCs isolated from FD patients represent a promising avenue for modeling the altered genetic expression of FD, demonstrating a methodology that can be applied to a host of other genetic disorders to test the therapeutic potential of candidate molecules. Hum Mutat 33:530–540, 2012.
Schizophrenia Research | 2015
Aurélie Bergon; Raoul Belzeaux; Magali Comte; Florence Pelletier; Mylène Hervé; Erin Gardiner; Natalie J. Beveridge; Bing Liu; Vaughan J. Carr; Rodney J. Scott; Brian Kelly; Murray J. Cairns; Nishantha Kumarasinghe; Ulrich Schall; Olivier Blin; José Boucraut; Paul A. Tooney; E. Fakra; El Chérif Ibrahim
The molecular mechanisms underlying schizophrenia remain largely unknown. Although schizophrenia is a mental disorder, there is increasing evidence to indicate that inflammatory processes driven by diverse environmental factors play a significant role in its development. With gene expression studies having been conducted across a variety of sample types, e.g., blood and postmortem brain, it is possible to investigate convergent signatures that may reveal interactions between the immune and nervous systems in schizophrenia pathophysiology. We conducted two meta-analyses of schizophrenia microarray gene expression data (N=474) and non-psychiatric control (N=485) data from postmortem brain and blood. Then, we assessed whether significantly dysregulated genes in schizophrenia could be shared between blood and brain. To validate our findings, we selected a top gene candidate and analyzed its expression by RT-qPCR in a cohort of schizophrenia subjects stabilized by atypical antipsychotic monotherapy (N=29) and matched controls (N=31). Meta-analyses highlighted inflammation as the major biological process associated with schizophrenia and that the chemokine receptor CX3CR1 was significantly down-regulated in schizophrenia. This differential expression was also confirmed in our validation cohort. Given both the recent data demonstrating selective CX3CR1 expression in subsets of neuroimmune cells, as well as behavioral and neuropathological observations of CX3CR1 deficiency in mouse models, our results of reduced CX3CR1 expression adds further support for a role played by monocyte/microglia in the neurodevelopment of schizophrenia.
Systems Biology in Reproductive Medicine | 2015
Catherine Metzler-Guillemain; Genevieve Victorero; Cyrille Lepoivre; Aurélie Bergon; Miriam Yammine; Jeanne Perrin; I. Sari-Minodier; Nicolas Boulanger; Pascal Rihet; Cathy Nguyen
Abstract Spermatozoa contain a complex population of RNAs including messenger RNAs (mRNAs) and small RNAs such as microRNAs (miRNA). It has been reported that these RNAs can be used to understand the mechanisms by which toxicological exposure affects spermatogenesis. The aim of our study was to compare mRNA and miRNA profiles in spermatozoa from eight smokers and eight non-smokers, and search for potential relationships between mRNA and miRNA variation. All men were selected based on their answers to a standard toxic exposure questionnaire, and sperm parameters. Using mRNA and miRNA microarrays, we showed that mRNAs from 15 genes were differentially represented between smokers and non-smokers (p < 0.01): five had higher levels and 10 lower levels in the smokers. For the microRNAs, 23 were differentially represented: 16 were higher and seven lower in the smokers (0.004 ≤ p < 0.01). Quantitative RT-PCR confirmed the lower levels in smokers compared to non-smokers for hsa-miR-296-5p, hsa-miR-3940, and hsa-miR-520d-3p. Moreover, we observed an inverse relationship between the levels of microRNAs and six potential target mRNAs (B3GAT3, HNRNPL, OASL, ODZ3, CNGB1, and PKD2). Our results indicate that alterations in the level of a small number of microRNAs in response to smoking may contribute to changes in mRNA expression in smokers. We conclude that large-scale analysis of spermatozoa RNAs can be used to help understand the mechanisms by which human spermatogenesis responds to toxic substances including those in tobacco smoke.