Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Aurelie Fabre is active.

Publication


Featured researches published by Aurelie Fabre.


Nature Methods | 2006

Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy

Delphine Débarre; Willy Supatto; Ana-Maria Pena; Aurelie Fabre; Thierry Tordjmann; Laurent Combettes; Marie-Claire Schanne-Klein; Emmanuel Beaurepaire

Lipid bodies have an important role in energy storage and lipid regulation. Here we show that lipid bodies are a major source of contrast in third-harmonic generation (THG) microscopy of cells and tissues. In hepatocytes, micrometer-sized lipid bodies produce a THG signal 1–2 orders of magnitude larger than other structures, which allows one to image them with high specificity. THG microscopy with ∼1,200 nm excitation can be used to follow the distribution of lipid bodies in a variety of unstained samples including insect embryos, plant seeds and intact mammalian tissue (liver, lung). We found that epi-THG imaging is possible in weakly absorbing tissues because bulk scattering redirects a substantial fraction of the forward-generated harmonic light toward the objective. Finally, we show that the combination of THG microscopy with two-photon and second-harmonic imaging provides a new tool for exploring the interactions between lipid bodies, extracellular matrix and fluorescent compounds (vitamin A, NADH and others) in tissues.


Heart | 2005

Sudden adult death syndrome and other non-ischaemic causes of sudden cardiac death

Aurelie Fabre; Mary N. Sheppard

Objective: To evaluate non-atherosclerotic cardiac deaths in the UK population aged over 15 years including elderly patients and to highlight the concept of the structurally normal heart in sudden death. Methods: Pathological data were collected prospectively for sudden adult deaths referred by UK coroners. Results: 453 cases of sudden death from 1994 to 2003 (278 men (61.4%) and 175 women (38.6%), age range 15–81 years) were reviewed. Males predominated in both age groups (⩽ 35 years, > 35 years). More than half of the hearts (n  =  269, 59.3%) were structurally normal. In the other 40.7%, cardiac abnormalities were noted, which included: (1) cardiomyopathies (23%) such as idiopathic fibrosis, left ventricular hypertrophy, hypertrophic cardiomyopathy, dilated cardiomyopathy, and arrhythmogenic right ventricular dysplasia; (2) inflammatory disorders (8.6%) including lymphocytic myocarditis and cardiac sarcoidosis; (3) non-atheromatous abnormalities of coronary arteries (4.6%); (4) valve diseases; and (5) miscellaneous and rare causes. Conclusion: The concept of the structurally normal heart in sudden death and the need for histological examination to detect underlying disease is highlighted. Relatives need to be referred for cardiological and genetic screening in cases of normal hearts found at necropsy.


Gut | 2003

Measurement and determinants of the natural history of liver fibrosis in hepatitis C virus infection: a cross sectional and longitudinal study

Mark Wright; Robert Goldin; Aurelie Fabre; J. Lloyd; Howard C. Thomas; C. Trepo; P. Pradat; Mark Thursz

Introduction: The rate of development of liver fibrosis in hepatitis C virus (HCV) infection varies between individuals. This accounts for the variation in duration of progression to cirrhosis. The aims of this study were: (1) to determine whether fibrosis progresses linearly through the grading scales and (2) to identify factors which influence the rate of fibrosis. Methods: HCV infected patients who had undergone at least one liver biopsy were identified. Biopsies were scored using the modified HAI (Ishak) and METAVIR systems, which were compared. Patients were treatment naïve at first biopsy. Demographic features were examined for their relationship to fibrosis rate (defined as fibrosis stage/infection duration) using univariate and multivariate analysis. A subgroup of patients with two biopsies was examined to test the assumption that fibrosis progresses in a linear fashion. Results: A total of 917 patients were included. Male sex (p<0.00001), older age at infection (p⩽0.00001), and viral genotype non-1 (p=0.005) were all associated with a rapid rate of fibrosis. On multiple linear regression they accounted for 29.5% of the variability in fibrosis rate (r2=0.295). METAVIR and Ishak scores were highly correlated (r=0.935, p<0.0001). In 137 patients who had two biopsies, the predicted probability for an increase of 1 on the fibrosis score was too low to assess linearity. Conclusions: Demographic features account for a minority of fibrosis rate variability. The Ishak and METAVIR scoring systems are equivalent. Linearity of fibrosis progression cannot be assessed in biopsies only a few years apart.


European Respiratory Journal | 2012

Acute exacerbations and pulmonary hypertension in advanced idiopathic pulmonary fibrosis

Eoin P. Judge; Aurelie Fabre; Huzaifa Adamali; Jim J. Egan

The aim of this study was to evaluate the risk factors for and outcomes of acute exacerbations in patients with advanced idiopathic pulmonary fibrosis (IPF), and to examine the relationship between disease severity and neovascularisation in explanted IPF lung tissue. 55 IPF patients assessed for lung transplantation were divided into acute (n=27) and non-acute exacerbation (n=28) groups. Haemodynamic data was collected at baseline, at the time of acute exacerbation and at lung transplantation. Histological analysis and CD31 immunostaining to quantify microvessel density (MVD) was performed on the explanted lung tissue of 13 transplanted patients. Acute exacerbations were associated with increased mortality (p=0.0015). Pulmonary hypertension (PH) at baseline and acute exacerbations were associated with poor survival (p<0.01). PH at baseline was associated with a significant risk of acute exacerbations (HR 2.217, p=0.041). Neovascularisation (MVD) was significantly increased in areas of cellular fibrosis and significantly decreased in areas of honeycombing. There was a significant inverse correlation between mean pulmonary artery pressure and MVD in areas of honeycombing. Acute exacerbations were associated with significantly increased mortality in patients with advanced IPF. PH was associated with the subsequent development of an acute exacerbation and with poor survival. Neovascularisation was significantly decreased in areas of honeycombing, and was significantly inversely correlated with mean pulmonary arterial pressure in areas of honeycombing.


European Respiratory Journal | 2008

Modulation of bleomycin-induced lung fibrosis by serotonin receptor antagonists in mice

Aurelie Fabre; Joëlle Marchal-Somme; S. Marchand-Adam; Christophe Quesnel; Raphael Borie; Monique Dehoux; Ruffié C; Callebert J; Launay Jm; Hénin D; Paul Soler; Bruno Crestani

Serotonin (5-hydroxytryptamine; 5-HT) is known to increase proliferation and collagen synthesis by fibroblasts. Two receptor subtypes, 5-HT2A and 5-HT2B, have been shown to play the most important roles in the lung. In the present study, the role of serotonin in lung fibrosis was investigated using the bleomycin mouse model. Serotonin concentrations in lung homogenates increased significantly over the time course of bleomycin-induced fibrosis, with a maximum at day seven. The expression of serotonin receptors 5-HT2A and 5-HT2B increased in the lung after bleomycin treatment, as assessed by PCR, specific binding and immunohistochemistry. Blockage of 5-HT2A receptors by ketanserin and 5-HT2B receptors by SB215505 reduced bleomycin-induced lung fibrosis, as demonstrated by reduced lung collagen content and reduced procollagen 1 and procollagen 3 mRNA expression. Serotonin antagonists promoted an antifibrotic environment by decreasing the lung mRNA levels of transforming growth factor-β1, connective growth factor and plasminogen activator inhibitor-1 mRNA, but had minimal effects on lung inflammation as assessed by bronchoalveolar lavage cytology analysis. Interestingly, the 5-HT2B receptor was strongly expressed by fibroblasts in the fibroblastic foci in human idiopathic pulmonary fibrosis samples. In conclusion, the present study showed involvement of serotonin in the pathophysiology of bleomycin-induced lung fibrosis in mice and identified it as a potential therapeutic target in lung fibrotic disorders.


American Journal of Pathology | 2012

The Hedgehog System Machinery Controls Transforming Growth Factor-β–Dependent Myofibroblastic Differentiation in Humans: Involvement in Idiopathic Pulmonary Fibrosis

Natacha Cigna; Elika Farrokhi Moshai; Stéphanie Brayer; Joëlle Marchal-Somme; Lidwine Wemeau-Stervinou; Aurelie Fabre; Hervé Mal; Guy Lesèche; Monique Dehoux; Paul Soler; Bruno Crestani; Arnaud Mailleux

Idiopathic pulmonary fibrosis (IPF) is a devastating disease of unknown cause. Key signaling developmental pathways are aberrantly expressed in IPF. The hedgehog pathway plays a key role during fetal lung development and may be involved in lung fibrogenesis. We determined the expression pattern of several Sonic hedgehog (SHH) pathway members in normal and IPF human lung biopsies and primary fibroblasts. The effect of hedgehog pathway inhibition was assayed by lung fibroblast proliferation and differentiation with and without transforming growth factor (TGF)-β1. We showed that the hedgehog pathway was reactivated in the IPF lung. Importantly, we deciphered the cross talk between the hedgehog and TGF-β pathway in human lung fibroblasts. TGF-β1 modulated the expression of key components of the hedgehog pathway independent of Smoothened, the obligatory signal transducer of the pathway. Smoothened was required for TGF-β1-induced myofibroblastic differentiation of control fibroblasts, but differentiation of IPF fibroblasts was partially resistant to Smoothened inhibition. Furthermore, functional hedgehog pathway machinery from the primary cilium, as well as GLI-dependent transcription in the nucleus, was required for the TGF-β1 effects on normal and IPF fibroblasts during myofibroblastic differentiation. These data identify the GLI transcription factors as potential therapeutic targets in lung fibrosis.


Hepatology | 2010

Defective bone morphogenic protein signaling underlies hepcidin deficiency in HFE hereditary hemochromatosis

John Ryan; Eleanor Ryan; Aurelie Fabre; Matthew W. Lawless; John Crowe

Hereditary hemochromatosis (HH) is a common inherited iron overload disorder. The vast majority of patients carry the missense Cys282Tyr mutation of the HFE gene. Hepcidin, the central regulator of iron homeostasis, is deficient in HH, leading to unchecked iron absorption and subsequent iron overload. The bone morphogenic protein (BMP)/small mothers against decapentaplegic (Smad) signaling cascade is central to the regulation of hepcidin. Recent data from HH mice models indicate that this pathway may be defective in the absence of the HFE protein. Hepatic BMP/Smad signaling has not been characterized in a human HFE‐HH cohort to date. Hepatic expression of BMP/Smad‐related genes was examined in 20 HFE‐HH males with significant iron overload, and compared to seven male HFE wild‐type controls using quantitative real‐time reverse transcription polymerase chain reaction. Hepatic expression of BMP6 was appropriately elevated in HFE‐HH compared to controls (P = 0.02), likely related to iron overload. Despite this, no increased expression of the BMP target genes hepcidin and Id1 was observed, and diminished phosphorylation of Smad1/Smad5/Smad8 protein relative to iron burden was found upon immunohistochemical analysis, suggesting that impaired BMP signaling occurs in HFE‐HH. Furthermore, Smad6 and Smad7, inhibitors of BMP signaling, were up‐regulated in HFE‐HH compared to controls (P = 0.001 and P = 0.018, respectively). Conclusion: New data arising from this study suggest that impaired BMP signaling underlies the hepcidin deficiency of HFE‐HH. Moreover, the inhibitory Smads, Smad6, and Smad7 are identified as potential disruptors of this signal and, hence, contributors to the pathogenesis of this disease. (HEPATOLOGY 2010;)


Journal of Medicinal Chemistry | 2010

Modified Cap Group Suberoylanilide Hydroxamic Acid Histone Deacetylase Inhibitor Derivatives Reveal Improved Selective Antileukemic Activity

Chanaz Salmi-Smail; Aurelie Fabre; Franck Dequiedt; Audrey Restouin; Rémy Castellano; Slaveia Garbit; Philippe Roche; Xavier Morelli; Jean Michel Brunel; Yves Collette

A series of SAHA cap derivatives was designed and prepared in good-to-excellent yields that varied from 49% to 95%. These derivatives were evaluated for their antiproliferative activity in several human cancer cell lines. Antiproliferative activity was observed for concentrations varying from 0.12 to >100 microM, and a molecular modeling approach of selected SAHA derivatives, based on available structural information of human HDAC8 in complex with SAHA, was performed. Strikingly, two compounds displayed up to 10-fold improved antileukemic activity with respect to SAHA; however, these compounds displayed antiproliferative activity similar to SAHA when assayed against solid tumor-derived cell lines. A 10-fold improvement in the leukemic vs peripheral blood mononuclear cell therapeutic ratio, with no evident in vivo toxicity toward blood cells, was also observed. The herein-described compounds and method of synthesis will provide invaluable tools to investigate the molecular mechanism responsible for the reported selectively improved antileukemic activity.


Molecular Immunology | 2008

Ecto-F1-ATPase and MHC-class I close association on cell membranes

Pierre Vantourout; Laurent O. Martinez; Aurelie Fabre; Xavier Collet; Eric Champagne

Subunits of the mitochondrial ATP synthase complex are expressed on the surface of tumors, bind the TCR of human Vgamma9/Vdelta2 lymphocytes and promote their cytotoxicity. Present experiments show that detection of the complex (called ecto-F1-ATPase) at the cell surface by immunofluorescence correlates with low MHC-class I antigen expression. Strikingly, the alpha and beta chains of ecto-F1-ATPase are detected in membrane protein precipitates from immunofluorescence-negative cells, suggesting that ATPase epitopes are masked. Removal of beta2-microglobulin by mild acid treatment so that most surface MHC-I molecules become free heavy chains reveals F1-ATPase epitopes on MHC-I+ cell lines. Ecto-F1-ATPase is detected by immunofluorescence on primary fibroblasts which express moderate levels of MHC-I antigens. Up-regulation of MHC-I on these cells following IFN-gamma and/or TNF-alpha treatment induces a dose-dependent disappearance of F1-ATPase epitopes. Finally, biotinylated F1-ATPase cell surface components co-immunoprecipitate with MHC-I molecules confirming the association of both complexes on Raji cells. Confocal microscopy analysis of MHC-I and ecto-F1-ATPase beta chain expression on HepG2 cells shows a co-localization of both complexes in punctate membrane domains. This demonstrates that the TCR target F1-ATPase is in close contact with MHC-I antigens which are known to control Vgamma9/Vdelta2 T cell activity through binding to natural killer inhibitory receptors.


Thorax | 2008

Activation of somatostatin receptors attenuates pulmonary fibrosis

Raphael Borie; Aurelie Fabre; fabienne prost; Joëlle Marchal-Somme; Rachida Lebtahi; S. Marchand-Adam; Michel Aubier; Paul Soler; Bruno Crestani

Background and aim: Somatostatin analogues may have antifibrotic properties in the lung. The aim of this study was to evaluate the expression of the five somatostatin receptors sst1 to sst5 in normal and fibrotic mouse lung and the action of SOM230 (pasireotide), a new somatostatin analogue with a long half-life, in bleomycin induced lung fibrosis and in human lung fibroblasts in vitro. Methods: After intratracheal injection of bleomycin, C57Bl6 male mice received one daily subcutaneous injection of SOM230 or saline. The lungs were evaluated on days 3, 7 and 14 after administration of bleomycin. Results: We found that all somatostatin receptors were expressed in the normal mouse lung. The sst2 receptor mRNA expression was increased after bleomycin. SOM230 improved mice survival (69% vs 44%; p = 0.024), reduced lung collagen content at day 14 and decreased lung collagen-1 mRNA at day 7. SOM230 reduced bronchoalveolar lavage inflammatory cell influx at day 3, decreased lung connective tissue growth factor mRNA and transforming growth factor (TGF) β mRNA and increased lung hepatocyte growth factor and keratinocyte growth factor mRNA. The sst2 receptor was strongly expressed in the human lung (normal or fibrotic), particularly by fibroblasts. In vitro, SOM230 reduced BrdU incorporation by control human lung fibroblasts cultured under basal conditions or with TGFβ, and reduced alpha-1 collagen-1 mRNA expression in TGFβ stimulated fibroblasts. Conclusion: We conclude that SOM230 attenuates bleomycin induced pulmonary fibrosis in mice and human lung fibroblasts activation. This study points to a potential new approach for treating pulmonary fibrotic disorders.

Collaboration


Dive into the Aurelie Fabre's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

S. Marchand-Adam

François Rabelais University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rosemary Kane

University College Dublin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Healy

Mater Misericordiae University Hospital

View shared research outputs
Top Co-Authors

Avatar

Denise Boylan

University College Dublin

View shared research outputs
Researchain Logo
Decentralizing Knowledge