Aurélie Rossin
University of Nice Sophia Antipolis
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Aurélie Rossin.
Nature Medicine | 2001
Lucia Altucci; Aurélie Rossin; Wolfgang Raffelsberger; Armin Reitmair; Christine Chomienne; Hinrich Gronemeyer
The therapeutic and preventive activities of retinoids in cancer are due to their ability to modulate the growth, differentiation, and survival or apoptosis of cancer cells. Here we show that in NB4 acute promyelocytic leukemia cells, retinoids selective for retinoic-acid receptor-α induced an autoregulatory circuitry of survival programs followed by expression of the membrane-bound tumor-selective death ligand, TRAIL (tumor necrosis factor-related apoptosis-inducing ligand, also called Apo-2L). In a paracrine mode of action, TRAIL killed NB4 as well as heterologous and retinoic-acid–resistant cells. In the leukemic blasts of freshly diagnosed acute promyelocytic leukemia patients, retinoic-acid–induced expression of TRAIL most likely caused blast apoptosis. Thus, induction of TRAIL-mediated death signaling appears to contribute to the therapeutic value of retinoids.
Biochemical Journal | 2009
Aurélie Rossin; Mathieu Derouet; Fadi Abdel-Sater; Anne-Odile Hueber
S-palmitoylation is a lipid modification that regulates membrane-protein association and influences protein trafficking, stability or aggregation, thus playing an important role in protein signalling. We previously demonstrated that the palmitoylation of Fas, one of the DD (death domain)-containing members of the TNFR [TNF (tumour necrosis factor) receptor] superfamily, is essential for the redistribution of this receptor into lipid rafts, an obligatory step for the death signal transmission. Here we investigate the requirement of protein palmitoylation in the activities of other DD-containing death receptors. We show that DR4 is palmitoylated, whereas DR5 and TNFR1 are not. Furthermore, DR4 palmitoylation is required for its raft localization and its ability to oligomerize, two essential features in TRAIL (TNF-related apoptosis-inducing ligand)-induced death signal transmission.
Cell Death and Disease | 2010
Guardiola-Serrano F; Aurélie Rossin; Nathalie Cahuzac; Katharina Lückerath; Inga Maria Melzer; Sébastien Mailfert; Didier Marguet; Martin Zörnig; Anne-Odile Hueber
Fas ligand (FasL) is a transmembrane protein that regulates cell death in Fas-bearing cells. FasL-mediated cell death is essential for immune system homeostasis and the elimination of viral or transformed cells. Because of its potent cytotoxic activity, FasL expression at the cell surface is tightly regulated, for example, via processing by ADAM10 and SPPL2a generating soluble FasL and the intracellular fragments APL (ADAM10-processed FasL form) and SPA (SPPL2a-processed APL). In this study, we report that FasL processing by ADAM10 counteracts Fas-mediated cell death and is strictly regulated by membrane localization, interactions and modifications of FasL. According to our observations, FasL processing occurs preferentially within cholesterol and sphingolipid-rich nanodomains (rafts) where efficient Fas–FasL contact occurs, Fas receptor and FasL interaction is also required for efficient FasL processing, and FasL palmitoylation, which occurs within its transmembrane domain, is critical for efficient FasL-mediated killing and FasL processing.
Cell Death & Differentiation | 2015
Aurélie Rossin; Jérôme Durivault; Chakhtoura-Feghali T; Nadia Lounnas; Gagnoux-Palacios L; Anne-Odile Hueber
The death receptor Fas undergoes a variety of post-translational modifications including S-palmitoylation. This protein acylation has been reported essential for an optimal cell death signaling by allowing both a proper Fas localization in cholesterol and sphingolipid-enriched membrane nanodomains, as well as Fas high-molecular weight complexes. In human, S-palmitoylation is controlled by 23 members of the DHHC family through their palmitoyl acyltransferase activity. In order to better understand the role of this post-translational modification in the regulation of the Fas-mediated apoptosis pathway, we performed a screen that allowed the identification of DHHC7 as a Fas-palmitoylating enzyme. Indeed, modifying DHHC7 expression by specific silencing or overexpression, respectively, reduces or enhances Fas palmitoylation and DHHC7 co-immunoprecipitates with Fas. At a functional level, DHHC7-mediated palmitoylation of Fas allows a proper Fas expression level by preventing its degradation through the lysosomes. Indeed, the decrease of Fas expression obtained upon loss of Fas palmitoylation can be restored by inhibiting the lysosomal degradation pathway. We describe the modification of Fas by palmitoylation as a novel mechanism for the regulation of Fas expression through its ability to circumvent its degradation by lysosomal proteolysis.
Experimental Cell Research | 2010
Aurélie Rossin; Rosana Kral; Nadia Lounnas; Krittalak Chakrabandhu; Sébastien Mailfert; Didier Marguet; Anne-Odile Hueber
Fas interaction at the plasma membrane with its lipid and protein environment plays a crucial role in the early steps of Fas signalling induced by Fas ligand binding. Particularly, Fas localisation in the raft nanodomains, ezrin-mediated interaction with the actin cytoskeleton and subsequent internalization are critical steps in Fas-mediated cell death. We identified a lysine-rich region (LRR) in the cytoplasmic, membrane-proximal region of Fas as a key determinant modulating these initial events. Through a genetic approach, we demonstrate that Fas LRR represents another signal additional to palmitoylation targeting Fas to the raft nanodomains, and modulates Fas interaction with the cytoskeleton.
Cell Death & Differentiation | 2007
Leal-Sanchez J; Arnaud Couzinet; Aurélie Rossin; Abdel-Sater F; Krittalak Chakrabandhu; Luci C; Anjuere F; Stebe E; David C. Hancock; Anne-Odile Hueber
The protein Daxx promotes Fas-mediated cell death through activation of apoptosis signal-regulating kinase 1, leading to the activation of the MAPKs JNK and p38. Owing to the in utero lethality of daxx-deficient mice, the in vivo role of Daxx has been so far difficult to analyze. We have generated transgenic mice expressing a dominant-negative form of Daxx (Daxx-DN) in the T-cell lineage. We show that Daxx is recruited to the Fas receptor upon FasL engagement and that Daxx-DN expression protects activated T cells from Fas-induced cell death, by preventing the death-inducing signal complex to be properly formed. Normal lymphocyte development and homeostasis are nevertheless observed. Interestingly, we report that both in vitro and in vivo stimulation of Daxx-DN T-lymphocytes leads to increased proliferative T-cell responses. This increased proliferation is associated with a marked increase in tyrosine phosphorylation of LAT and ZAP70 as Daxx-DN favor their recruitment to the T-cell receptor (TCR) complex. These findings identify Daxx as a critical regulator of T-lymphocyte homeostasis by decreasing TCR-induced cell proliferation and by promoting Fas-mediated cell death.
Immunobiology | 2015
Denise Dorvignit; Liliana García-Martínez; Aurélie Rossin; Katya Sosa; Justo Viera; Tays Hernández; Cristina Mateo; Anne-Odile Hueber; Circe Mesa; Alejandro López-Requena
Gangliosides are sialic acid-bearing glycosphingolipids expressed on all mammalian cell membranes, and participate in several cellular processes. During malignant transformation their expression changes, both at the quantitative and qualitative levels. Of particular interest is the overexpression by tumor cells of Neu5Gc-gangliosides, which are absent, or detected in trace amounts, in human normal cells. The GM3(Neu5Gc) ganglioside in particular has been detected in many human tumors, and it is considered one of the few tumor specific antigen. We previously demonstrated that a humanized antibody specific for this molecule, named 14F7hT, retained the binding and cytotoxic properties of the mouse antibody. In this work, we confirm that 14F7hT exerts a non-apoptotic cell death mechanism in vitro and shows its potent in vivo antitumor activity on a solid mouse myeloma model. Also, we demonstrate, in contrast to the murine counterpart, the capacity of this antibody to induce antibody-dependent cell-mediated cytotoxicity using human effector cells, which increases its potential for the treatment of GM3(Neu5Gc)-expressing human tumors.
Journal of Cell Biology | 2018
Laurent Gagnoux-Palacios; Hala Awina; Stéphane Audebert; Aurélie Rossin; Magali Mondin; Franck Borgese; Carlota Planas-Botey; Amel Mettouchi; Jean-Paul Borg; Anne-Odile Hueber
Finely tuned regulation of epithelial cell death maintains tissue integrity and homeostasis. At the cellular level, life and death decisions are controlled by environmental stimuli such as the activation of death receptors. We show that cell polarity and adherens junction formation prevent proapoptotic signals emanating from the Fas death receptor. Fas is sequestered in E-cadherin actin-based adhesion structures that are less able to induce downstream apoptosis signaling. Using a proteomic-based approach, we find that the polarity molecule Dlg1 interacts with the C-terminal PDZ-binding site in Fas and that this interaction decreases formation of the death-inducing complex upon engagement with Fas ligand (FasL), thus acting as an additional cell death protection mechanism. We propose that E-cadherin and Dlg1 inhibit FasL-induced cell death by two complementary but partially independent mechanisms that help to maintain epithelial homeostasis by protecting normal polarized epithelia from apoptosis. When polarity is lost, the Fas–cadherin–Dlg1 antiapoptotic complex is disrupted, and FasL can promote the elimination of compromised nonpolarized cells.
Archive | 2017
Aurélie Rossin; Anne-Odile Hueber
S-acylation is the covalent addition of a fatty acid, most generally palmitate onto cysteine residues of proteins through a labile thioester linkage. The death receptor CD95 is S-palmitoylated and this post-translational modification plays a crucial role on CD95 organization in cellular membranes and thus on CD95-mediated signaling. Here, we describe the nonradioactive detection of CD95 S-acylation by acyl-biotin exchange chemistry in which a biotin is substituted for the CD95-linked fatty acid. This sensitive technique, which depends on the ability of hydroxylamine to specifically cleave the thioester linkage between fatty acids and proteins, relies on three chemical steps: (1) blockage of free thiols of non-modified cysteine residues, (2) hydroxylamine-mediated cleavage of thioester-linked fatty acids to restore free thiols and (3) biotinylation of free thiols with a thiol reactive biotinylation agent. Resulting biotinylated proteins can be easily purified by an avidin capture and analyzed by SDS-PAGE and immunoblotting.
Apoptosis | 2017
Aurélie Rossin; Nadia Lounnas; Jérôme Durivault; Giorgia Miloro; Laurent Gagnoux-Palacios; Anne-Odile Hueber
The Fas/FasL system plays a critical role in death by apoptosis and immune escape of cancer cells. The Fas receptor being ubiquitously expressed in tissues, its apoptotic-inducing function, initiated upon FasL binding, is tightly regulated by several negative regulatory mechanisms to prevent inappropriate cell death. One of them, involving the non-receptor tyrosine kinase Btk, was reported mainly in B cells and only poorly described. We report here that Btk negatively regulates, through its tyrosine kinase activity, the FasL-mediated cell death in epithelial cell lines from colon cancer origin. More importantly, we show that Btk interacts not only with Fas but also with the phosphatidylinositol-4-phosphate 5-kinase, PIP5K1γ, which, upon stimulation by Fas ligand, is responsible of a rapid and transient synthesis of phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2). This production requires both the presence and the tyrosine kinase activity of Btk, and participates in the negative regulation of FasL-mediated cell death since knocking down PIP5K1γ expression significantly strengthens the apoptotic signal upon FasL engagement. Altogether, our data demonstrate the cooperative role of Btk and PIP5K1γ in a FasL-induced PI(4,5)P2 production, both proteins participating to the threshold setting of FasL-induced apoptotic commitment in colorectal cell lines.