Aurélie Tasiemski
Centre national de la recherche scientifique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Aurélie Tasiemski.
Journal of Immunology | 2008
David Schikorski; Virginie Cuvillier-Hot; Matthias Leippe; Céline Boidin-Wichlacz; Christian Slomianny; Eduardo R. Macagno; Michel Salzet; Aurélie Tasiemski
Following trauma, the CNS of the medicinal leech, unlike the mammalian CNS, has a strong capacity to regenerate neurites and synaptic connections that restore normal function. In this study, we show that this regenerative process is enhanced by a controlled bacterial infection, suggesting that induction of regeneration of normal CNS function may depend critically upon the coinitiation of an immune response. We explore the interaction between the activation of a neuroimmune response and the process of regeneration by assaying the potential roles of two newly characterized antimicrobial peptides. Our data provide evidence that microbial components differentially induce the transcription, by microglial cells, of both antimicrobial peptide genes, the products of which accumulate rapidly at sites in the CNS undergoing regeneration following axotomy. Using a preparation of leech CNS depleted of microglial cells, we also demonstrate the production of antimicrobial peptides by neurons. Interestingly, in addition to exerting antibacterial properties, both peptides act as promoters of the regenerative process of axotomized leech CNS. These data are the first to report the neuronal synthesis of antimicrobial peptides and their participation in the immune response and the regeneration of the CNS. Thus, the leech CNS appears as an excellent model for studying the implication of immune molecules in neural repair.
Molecular Brain Research | 2000
Aurélie Tasiemski; Martine Verger-Bocquet; Mario Cadet; Yannick Goumon; Marie-Hélène Metz-Boutigue; Dominique Aunis; George B. Stefano; Michel Salzet
Lipopolysaccharides (LPS) injection into the coelomic fluid of the leech Theromyzon tessulatum stimulates release of proenkephalin A (PEA)-derived peptides as determined by immunoprecipitation and Western blot analyses. This release occurs in the first 15 min after LPS exposure and yields a 5.3-kDa peptide fragment corresponding to the C-terminal part of the precursor. This fragment is then cleaved to free an antibacterial peptide related to mammals arginine phenylalanine extended enkelytin: the peptide B. These PEA processing peptides were characterized using a combination of techniques including reversed-phase HPLC, microsequencing and mass spectrometry. The isolated invertebrate peptide B presents a high sequence homology with the bovines and the same activity against Gram+bacteria. Titrations revealed the simultaneous appearance of Methionine-enkephalin (ME) and peptide B in invertebrates after stimulation by LPS (in a dose-dependent manner), surgical trauma or electrical stimulations to neural tissues of the mussel. Furthermore, peptide B processing in vitro yields Methionine-enkephalin arginine phenylalanine (MERF), which exhibits via the delta receptors, immunocyte excitatory properties, i.e., movement and conformational changes, but no antibacterial activity. We surmise that this unified response to the various stimuli is a survival strategy for organism by providing immediate antibacterial activity and immunocyte stimulation, thereby reducing any immune latency period needed for an adequate immune response.
BMC Genomics | 2010
Eduardo R. Macagno; Terry Gaasterland; Lee Edsall; Vineet Bafna; Marcelo B. Soares; Todd E. Scheetz; Thomas L. Casavant; Corinne Da Silva; Patrick Wincker; Aurélie Tasiemski; Michel Salzet
BackgroundThe medicinal leech, Hirudo medicinalis, is an important model system for the study of nervous system structure, function, development, regeneration and repair. It is also a unique species in being presently approved for use in medical procedures, such as clearing of pooled blood following certain surgical procedures. It is a current, and potentially also future, source of medically useful molecular factors, such as anticoagulants and antibacterial peptides, which may have evolved as a result of its parasitizing large mammals, including humans. Despite the broad focus of research on this system, little has been done at the genomic or transcriptomic levels and there is a paucity of openly available sequence data. To begin to address this problem, we constructed whole embryo and adult central nervous system (CNS) EST libraries and created a clustered sequence database of the Hirudo transcriptome that is available to the scientific community.ResultsA total of ~133,000 EST clones from two directionally-cloned cDNA libraries, one constructed from mRNA derived from whole embryos at several developmental stages and the other from adult CNS cords, were sequenced in one or both directions by three different groups: Genoscope (French National Sequencing Center), the University of Iowa Sequencing Facility and the DOE Joint Genome Institute. These were assembled using the phrap software package into 31,232 unique contigs and singletons, with an average length of 827 nt. The assembled transcripts were then translated in all six frames and compared to proteins in NCBIs non-redundant (NR) and to the Gene Ontology (GO) protein sequence databases, resulting in 15,565 matches to 11,236 proteins in NR and 13,935 matches to 8,073 proteins in GO. Searching the database for transcripts of genes homologous to those thought to be involved in the innate immune responses of vertebrates and other invertebrates yielded a set of nearly one hundred evolutionarily conserved sequences, representing all known pathways involved in these important functions.ConclusionsThe sequences obtained for Hirudo transcripts represent the first major database of genes expressed in this important model system. Comparison of translated open reading frames (ORFs) with the other openly available leech datasets, the genome and transcriptome of Helobdella robusta, shows an average identity at the amino acid level of 58% in matched sequences. Interestingly, comparison with other available Lophotrochozoans shows similar high levels of amino acid identity, where sequences match, for example, 64% with Capitella capitata (a polychaete) and 56% with Aplysia californica (a mollusk), as well as 58% with Schistosoma mansoni (a platyhelminth). Phylogenetic comparisons of putative Hirudo innate immune response genes present within the Hirudo transcriptome database herein described show a strong resemblance to the corresponding mammalian genes, indicating that this important physiological response may have older origins than what has been previously proposed.
Developmental and Comparative Immunology | 2001
Michel Salzet; Aurélie Tasiemski
It is widely accepted that all organisms have processes that maintain their state of health. Failure of these processes, such as those involving the naturally occurring antibacterial peptides, may lead to pathological events. Recent results demonstrate that these peptides, such as peptide B, appear in invertebrates and vertebrates (including humans) immediately after tissue trauma, and maintain themselves for long durations (over 4h). Their degradation products lead to other inflammatory peptides, such as Met-enkephalin-Arg-Phe. These newly described antibacterial peptides, which are released and not induced, are present on neuropeptide precursors such as proenkephalin. This is a new field of research, in that the same protein contains proposed neuropeptides, antibacterial peptides, and immune stimulatory peptides. The focus of this review is to describe how the pro-enkephalin derived peptides participate in immune processes.
Journal of Neuroimmunology | 2000
Aurélie Tasiemski; Michel Salzet; Herbert Benson; Gregory L. Fricchione; Thomas V. Bilfinger; Yannick Goumon; Marie Hélène Metz-Boutigue; Dominique Aunis; George B. Stefano
Antibacterial peptides, found in both invertebrates and vertebrates, represent a potential innate defense mechanism against microbial infections. However, it is unknown whether this process occurs in humans during surgery. We looked for evidence of release of antibacterial peptides during coronary artery bypass grafting (CABG). We used immunological techniques and antibacterial assays combined with high-performance gel-permeation chromatography, reverse-phase HPLC, N-terminal sequencing and comparison with synthetic standards to characterize the peptide B/enkelytin. We show the presence of anionic antibacterial peptide, the peptide B/enkelytin which correspond to the C-terminal part of proenkephalin A, from the plasma of patients undergoing CABG. Our studies show that peptide B/enkelytin is initially present at low levels in plasma and is then released in increased amounts just after skin incision. Antibacterial assays confirmed that the peptides specifically target gram-positive bacteria. We also demonstrate that peptide B/enkelytin is metabolized in vivo to the opioid peptides methionine-enkephalin-Arg-Phe and methionine-enkephalin, peptides that we show have granulocyte chemotactic activity. These findings suggest that in humans, surgical incision leads to the release of antibacterial peptides. Furthermore, these antibacterial peptides can be metabolized into compounds that have immune-activating properties.
Developmental and Comparative Immunology | 2011
Virginie Cuvillier-Hot; Céline Boidin-Wichlacz; Christian Slomianny; Michel Salzet; Aurélie Tasiemski
Unlike mammals, the CNS of the medicinal leech can regenerate damaged neurites, thus restoring neural functions. Our group recently demonstrated that the injured leech nerve cord is able to mount an immune response, which promotes the regenerative processes. This defense mechanism is microorganism-specific, suggesting that the leech CNS is able to discriminate among microbial components. We report here the characterization of two receptors potentially implicated in this detection: HmTLR1 and HmNLR. Interestingly, HmTLR1 presents an endosomal distribution in neurons and appears as a chimera combining the mammalian intraendosomal domain of TLR3 and the cytoplasmic section of TLR13, while HmNLR is cytosolic and has the highest homology to NLRC3 receptors. Both receptors show patterns of induction upon stimulation that suggest their involvement in the leech neuroimmune response. This work constitutes the first demonstration in an invertebrate of (i) an intracellular TLR and (ii) a cytosolic PRR related to the NLR family.
PLOS ONE | 2011
Céline Mériaux; Karim Arafah; Aurélie Tasiemski; Maxence Wisztorski; Jocelyne Bruand; Céline Boidin-Wichlacz; Annie Desmons; Delphine Debois; Olivier Laprévote; Alain Brunelle; Terry Gaasterland; Eduardo R. Macagno; Isabelle Fournier; Michel Salzet
Background The adult medicinal leech central nervous system (CNS) is capable of regenerating specific synaptic circuitry after a mechanical lesion, displaying evidence of anatomical repair within a few days and functional recovery within a few weeks. In the present work, spatiotemporal changes in molecular distributions during this phenomenon are explored. Moreover, the hypothesis that neural regeneration involves some molecular factors initially employed during embryonic neural development is tested. Results Imaging mass spectrometry coupled to peptidomic and lipidomic methodologies allowed the selection of molecules whose spatiotemporal pattern of expression was of potential interest. The identification of peptides was aided by comparing MS/MS spectra obtained for the peptidome extracted from embryonic and adult tissues to leech transcriptome and genome databases. Through the parallel use of a classical lipidomic approach and secondary ion mass spectrometry, specific lipids, including cannabinoids, gangliosides and several other types, were detected in adult ganglia following mechanical damage to connected nerves. These observations motivated a search for possible effects of cannabinoids on neurite outgrowth. Exposing nervous tissues to Transient Receptor Potential Vanilloid (TRPV) receptor agonists resulted in enhanced neurite outgrowth from a cut nerve, while exposure to antagonists blocked such outgrowth. Conclusion The experiments on the regenerating adult leech CNS reported here provide direct evidence of increased titers of proteins that are thought to play important roles in early stages of neural development. Our data further suggest that endocannabinoids also play key roles in CNS regeneration, mediated through the activation of leech TRPVs, as a thorough search of leech genome databases failed to reveal any leech orthologs of the mammalian cannabinoid receptors but revealed putative TRPVs. In sum, our observations identify a number of lipids and proteins that may contribute to different aspects of the complex phenomenon of leech nerve regeneration, establishing an important base for future functional assays.
Advances in Experimental Medicine and Biology | 2010
Aurélie Tasiemski; Michel Salzet
In the present chapter, we will emphasize the immune response in two compartments (Central nervous system and peripheral system) in two blood sucking leeches i.e., the medicinal leech and the bird leech Theromyzon tessulatum. In the medicinal leech, the neuroimmune response has been described in the context of septic trauma at the cellular and humoral levels through microglia, Toll-like, cannabinoids and chemoattractant factors activation and modulation. In the bird leech, the antimicrobial responses have been dissected at the cellular and molecular levels. Altogether, this chapter presents a complete integrate immune response from the brain and the systemic compartments with high similarity to the vertebrates one. These points that the neuroimmune and immune responses evolved sooner than can be expected.
Ecology and Evolution | 2017
Audrey Arnal; Camille Jacqueline; Beata Ujvari; Lucas Léger; Celine Moreno; Dominique Faugere; Aurélie Tasiemski; Céline Boidin-Wichlacz; Dorothée Missé; François Renaud; Jacques Montagne; Andreu Casali; Benjamin Roche; Frederic Mery; Frédéric Thomas
Abstract Hosts often accelerate their reproductive effort in response to a parasitic infection, especially when their chances of future reproduction decrease with time from the onset of the infection. Because malignancies usually reduce survival, and hence potentially the fitness, it is expected that hosts with early cancer could have evolved to adjust their life‐history traits to maximize their immediate reproductive effort. Despite the potential importance of these plastic responses, little attention has been devoted to explore how cancers influence animal reproduction. Here, we use an experimental setup, a colony of genetically modified flies Drosophila melanogaster which develop colorectal cancer in the anterior gut, to show the role of cancer in altering life‐history traits. Specifically, we tested whether females adapt their reproductive strategy in response to harboring cancer. We found that flies with cancer reached the peak period of oviposition significantly earlier (i.e., 2 days) than healthy ones, while no difference in the length and extent of the fecundity peak was observed between the two groups of flies. Such compensatory responses to overcome the fitness‐limiting effect of cancer could explain the persistence of inherited cancer‐causing mutant alleles in the wild.
Environmental Research | 2014
Virginie Cuvillier-Hot; Karine Salin; Séverine Devers; Aurélie Tasiemski; Pauline Schaffner; Raphaël Boulay; Sylvain Billiard; Alain Lenoir
Phthalates are synthetic contaminants released into the environment notably by plastic waste. Semi-volatile, they adsorb to atmospheric particles and get distributed in all ecosystems. Effects of this major anthropogenic pollution in economical species in aquatic habitats have attracted large interest. On the contrary, very few studies have focused on wild terrestrial species. Yet, these lipophilic molecules are easily trapped by insect cuticle; ants and other insects have been shown to permanently bear among their cuticular components a non-negligible proportion of phthalates, meaning that they suffer from chronic exposure to these pollutants. Oral route could also be an additional way of contamination, as phthalates tend to stick to any organic particle. We show here via a food choice experiment that Lasius niger workers can detect, and avoid feeding on, food contaminated with DEHP (DiEthyl Hexyl Phthalate), the most widespread phthalate found in nature. This suggests that the main source of contamination for ants is atmosphere and that doses measured on the cuticle correspond to the chronic exposure levels for these animals. Such an ecologically relevant dose of DEHP was used to contaminate ants in lab and to investigate their physiological impact. Over a chronic exposure (1 dose per week for 5 weeks), the egg-laying rate of queens was significantly reduced lending credence to endocrine disruptive properties of such a pollutant, as also described for aquatic invertebrates. On the contrary, short term exposure (24h) to a single dose of DEHP does not induce oxidative stress in ant workers as expected, but leads to activation of the immune system. Because of their very large distribution, their presence in virtually all terrestrial ecosystems and their representation at all trophic levels, ants could be useful indicators of contamination by phthalates, especially via monitoring the level of activation of their immune state.