Aurelien A. Serandour
University of Cambridge
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Aurelien A. Serandour.
Nature | 2015
Hisham Mohammed; Russell Ia; Rory Stark; Oscar M. Rueda; Theresa E. Hickey; Gerard A. Tarulli; Aurelien A. Serandour; Stephen N. Birrell; Alejandra Bruna; Amel Saadi; Suraj Menon; James Hadfield; Michelle Pugh; Ganesh V. Raj; Brown Gd; Clive D'Santos; Jessica L. L. Robinson; Grace O. Silva; Launchbury R; Charles M. Perou; Stingl J; Carlos Caldas; Wayne D. Tilley; Jason S. Carroll
Progesterone receptor (PR) expression is used as a biomarker of oestrogen receptor-α (ERα) function and breast cancer prognosis. Here we show that PR is not merely an ERα-induced gene target, but is also an ERα-associated protein that modulates its behaviour. In the presence of agonist ligands, PR associates with ERα to direct ERα chromatin binding events within breast cancer cells, resulting in a unique gene expression programme that is associated with good clinical outcome. Progesterone inhibited oestrogen-mediated growth of ERα+ cell line xenografts and primary ERα+ breast tumour explants, and had increased anti-proliferative effects when coupled with an ERα antagonist. Copy number loss of PGR, the gene coding for PR, is a common feature in ERα+ breast cancers, explaining lower PR levels in a subset of cases. Our findings indicate that PR functions as a molecular rheostat to control ERα chromatin binding and transcriptional activity, which has important implications for prognosis and therapeutic interventions.
Nature | 2015
Hisham Mohammed; I. Alasdair Russell; Rory Stark; Oscar M. Rueda; Theresa E. Hickey; Gerard A. Tarulli; Aurelien A. Serandour; Stephen N. Birrell; Alejandra Bruna; Amel Saadi; Suraj Menon; James Hadfield; Michelle Pugh; Ganesh V. Raj; Gordon D. Brown; Clive D’Santos; Jessica L. L. Robinson; Grace O. Silva; Rosalind Launchbury; Charles M. Perou; John Stingl; Carlos Caldas; Wayne D. Tilley; Jason S. Carroll
Progesterone receptor (PR) expression is used as a biomarker of oestrogen receptor-α (ERα) function and breast cancer prognosis. Here we show that PR is not merely an ERα-induced gene target, but is also an ERα-associated protein that modulates its behaviour. In the presence of agonist ligands, PR associates with ERα to direct ERα chromatin binding events within breast cancer cells, resulting in a unique gene expression programme that is associated with good clinical outcome. Progesterone inhibited oestrogen-mediated growth of ERα+ cell line xenografts and primary ERα+ breast tumour explants, and had increased anti-proliferative effects when coupled with an ERα antagonist. Copy number loss of PGR, the gene coding for PR, is a common feature in ERα+ breast cancers, explaining lower PR levels in a subset of cases. Our findings indicate that PR functions as a molecular rheostat to control ERα chromatin binding and transcriptional activity, which has important implications for prognosis and therapeutic interventions.
Cell Reports | 2016
Kamila M. Jozwik; Igor Chernukhin; Aurelien A. Serandour; Sankari Nagarajan; Jason S. Carroll
Summary FOXA1 is a pioneer factor that binds to enhancer regions that are enriched in H3K4 mono- and dimethylation (H3K4me1 and H3K4me2). We performed a FOXA1 rapid immunoprecipitation mass spectrometry of endogenous proteins (RIME) screen in ERα-positive MCF-7 breast cancer cells and found histone-lysine N-methyltransferase (MLL3) as the top FOXA1-interacting protein. MLL3 is typically thought to induce H3K4me3 at promoter regions, but recent findings suggest it may contribute to H3K4me1 deposition. We performed MLL3 chromatin immunoprecipitation sequencing (ChIP-seq) in breast cancer cells, and MLL3 was shown to occupy regions marked by FOXA1 occupancy and H3K4me1 and H3K4me2. MLL3 binding was dependent on FOXA1, indicating that FOXA1 recruits MLL3 to chromatin. MLL3 silencing decreased H3K4me1 at enhancer elements but had no appreciable impact on H3K4me3 at enhancer elements. We propose a mechanism whereby the pioneer factor FOXA1 recruits the chromatin modifier MLL3 to facilitate the deposition of H3K4me1 histone marks, subsequently demarcating active enhancer elements.
Proceedings of the National Academy of Sciences of the United States of America | 2017
Julie Carnesecchi; Christelle Forcet; Ling Zhang; Violaine Tribollet; Bruno Barenton; Rafik Boudra; Catherine Cerutti; Isabelle M. L. Billas; Aurelien A. Serandour; Jason S. Carroll; Claude Beaudoin; Jean-Marc Vanacker
Significance Dynamic demethylation of histone residues plays a crucial role in the regulation of gene expression. Lysine Specific Demethylase 1 (LSD1) can remove both transcriptionally permissive and repressive histone marks. How these activities are controlled is not clearly understood. Here, we show that the estrogen-related receptor α (ERRα) induces LSD1 to erase repressive marks in vitro. Through such a mechanism, LSD1 and ERRα commonly activate a set of transcriptional targets that include genes involved in the cellular capacity to invade the extracellular matrix. This process is a hallmark of cancer progression, to which high expression of both LSD1 and ERRα are strongly correlated. Lysine Specific Demethylase 1 (LSD1) removes mono- and dimethyl groups from lysine 4 of histone H3 (H3K4) or H3K9, resulting in repressive or activating (respectively) transcriptional histone marks. The mechanisms that control the balance between these two antagonist activities are not understood. We here show that LSD1 and the orphan nuclear receptor estrogen-related receptor α (ERRα) display commonly activated genes. Transcriptional activation by LSD1 and ERRα involves H3K9 demethylation at the transcriptional start site (TSS). Strikingly, ERRα is sufficient to induce LSD1 to demethylate H3K9 in vitro. The relevance of this mechanism is highlighted by functional data. LSD1 and ERRα coregulate several target genes involved in cell migration, including the MMP1 matrix metallo-protease, also activated through H3K9 demethylation at the TSS. Depletion of LSD1 or ERRα reduces the cellular capacity to invade the extracellular matrix, a phenomenon that is rescued by MMP1 reexpression. Altogether our results identify a regulatory network involving a direct switch in the biochemical activities of a histone demethylase, leading to increased cell invasion.
Genome Research | 2017
Julie Dubois-Chevalier; Vanessa Dubois; Hélène Dehondt; Parisa Mazrooei; Claire Mazuy; Aurelien A. Serandour; Céline Gheeraert; Penderia Guillaume; Eric Baugé; Bruno Derudas; Nathalie Hennuyer; Réjane Paumelle; Guillemette Marot; Jason S. Carroll; Mathieu Lupien; Bart Staels; Philippe Lefebvre; Jérôme Eeckhoute
Control of gene transcription relies on concomitant regulation by multiple transcriptional regulators (TRs). However, how recruitment of a myriad of TRs is orchestrated at cis-regulatory modules (CRMs) to account for coregulation of specific biological pathways is only partially understood. Here, we have used mouse liver CRMs involved in regulatory activities of the hepatic TR, NR1H4 (FXR; farnesoid X receptor), as our model system to tackle this question. Using integrative cistromic, epigenomic, transcriptomic, and interactomic analyses, we reveal a logical organization where trans-regulatory modules (TRMs), which consist of subsets of preferentially and coordinately corecruited TRs, assemble into hierarchical combinations at hepatic CRMs. Different combinations of TRMs add to a core TRM, broadly found across the whole landscape of CRMs, to discriminate promoters from enhancers. These combinations also specify distinct sets of CRM differentially organized along the genome and involved in regulation of either housekeeping/cellular maintenance genes or liver-specific functions. In addition to these TRMs which we define as obligatory, we show that facultative TRMs, such as one comprising core circadian TRs, are further recruited to selective subsets of CRMs to modulate their activities. TRMs transcend TR classification into ubiquitous versus liver-identity factors, as well as TR grouping into functional families. Hence, hierarchical superimpositions of obligatory and facultative TRMs bring about independent transcriptional regulatory inputs defining different sets of CRMs with logical connection to regulation of specific gene sets and biological pathways. Altogether, our study reveals novel principles of concerted transcriptional regulation by multiple TRs at CRMs.
Nature | 2015
Hisham Mohammed; I. Alasdair Russell; Rory Stark; Oscar M. Rueda; Theresa E. Hickey; Gerard A. Tarulli; Aurelien A. Serandour; Stephen N. Birrell; Alejandra Bruna; Amel Saadi; Suraj Menon; James Hadfield; Michelle Pugh; Ganesh V. Raj; Gordon D. Brown; Clive D’Santos; Jessica L. L. Robinson; Grace O. Silva; Rosalind Launchbury; Charles M. Perou; John Stingl; Carlos Caldas; Wayne D. Tilley; Jason S. Carroll
This corrects the article DOI: 10.1038/nature14583
Nature | 2015
Hisham Mohammed; I. Alasdair Russell; Rory Stark; Oscar M. Rueda; Theresa E. Hickey; Gerard A. Tarulli; Aurelien A. Serandour; Stephen N. Birrell; Alejandra Bruna; Amel Saadi; Suraj Menon; James Hadfield; Michelle Pugh; Ganesh V. Raj; Gordon D. Brown; Clive D’Santos; Jessica Ll Robinson; Grace O. Silva; Rosalind Launchbury; Charles M. Perou; John Stingl; Carlos Caldas; Wayne D. Tilley; Jason S. Carroll
Progesterone receptor (PR) expression is used as a biomarker of oestrogen receptor-α (ERα) function and breast cancer prognosis. Here we show that PR is not merely an ERα-induced gene target, but is also an ERα-associated protein that modulates its behaviour. In the presence of agonist ligands, PR associates with ERα to direct ERα chromatin binding events within breast cancer cells, resulting in a unique gene expression programme that is associated with good clinical outcome. Progesterone inhibited oestrogen-mediated growth of ERα+ cell line xenografts and primary ERα+ breast tumour explants, and had increased anti-proliferative effects when coupled with an ERα antagonist. Copy number loss of PGR, the gene coding for PR, is a common feature in ERα+ breast cancers, explaining lower PR levels in a subset of cases. Our findings indicate that PR functions as a molecular rheostat to control ERα chromatin binding and transcriptional activity, which has important implications for prognosis and therapeutic interventions.
Oncogene | 2018
Aurelien A. Serandour; Hisham Mohammed; A Miremadi; Klaas W. Mulder; Jason S. Carroll
The chromatin state is finely tuned to regulate function and specificity for transcription factors such as oestrogen receptor alpha (ER), which contributes to cell growth in breast cancer. ER transcriptional potential is mediated, in large part, by the specific associated proteins and co-factors that interact with it. Despite the identification and characterisation of several ER coregulators, a complete and systematic view of ER-regulating chromatin modifiers is lacking. By exploiting a focused siRNA screen that investigated the requirement for a library of 330 chromatin regulators in ER-mediated cell growth, we find that the NuRD and coREST histone deacetylation complexes are critical for breast cancer cell proliferation. Further, by proteomic and genomics approaches, we discover the transcription factor TRPS1 to be a key interactor of the NuRD and coREST complexes. Interestingly, TRPS1 gene amplification occurs in 28% of human breast tumours and is associated with poor prognosis. We propose that TRPS1 is required to repress spurious binding of ER, where it contributes to the removal of histone acetylation. Our data suggest that TRPS1 is an important ER-associated transcriptional repressor that regulates cell proliferation, chromatin acetylation and ER binding at the chromatin of cis-regulatory elements.
bioRxiv | 2018
Laura A Baker; Christoph Krisp; Daniel Roden; Holly Holliday; Sunny Z Wu; Simon Junankar; Aurelien A. Serandour; Hisham Mohammed; Radhika Nair; Chia-Ling Chan; Jessica Yang; Nicola Foreman; Breanna Fitzpatrick; Geetha Sankaranarayanan; Andrew M. K. Law; Christopher J. Ormandy; Matthew J. Naylor; Andrea McFarland; Peter T. Simpson; Sunil R. Lakhani; Sandra A O'Toole; Christina I. Selinger; Lyndal Anderson; Goli Samimi; Neville F. Hacker; Warren Kaplan; Jason S. Carroll; Mark P. Molloy; Alexander Swarbrick
Basal-like breast cancer (BLBC) is a poorly characterised, heterogeneous disease. Patients are diagnosed with aggressive, high-grade tumours and often relapse with chemotherapy resistance. Detailed understanding of the molecular underpinnings of this disease is essential to the development of personalised therapeutic strategies. Inhibitor of Differentiation 4 (ID4) is a helix-loop-helix transcriptional regulator required for mammary gland development. ID4 is overexpressed in a subset of BLBC patients, associating with a stem-like poor prognosis phenotype, and is necessary for the growth of cell line models of BLBC, through unknown mechanisms. Here, we have defined a molecular mechanism of action for ID4 in BLBC and the related disease highgrade serous ovarian cancer (HGSOV), by combining RIME proteomic analysis and ChIP-Seq mapping of genomic binding sites. Remarkably, these studies have revealed novel interactions with DNA damage response proteins, in particular, mediator of DNA damage checkpoint protein 1 (MDC1). Through MDC1, ID4 interacts with other DNA repair proteins (γH2AX and BRCA1) at fragile chromatin sites. ID4 does not affect transcription at these sites, instead binding to chromatin following DNA damage and regulating DNA damage signalling. Clinical analysis demonstrates that ID4 is amplified and overexpressed at a higher frequency in BRCA1-mutant BLBC compared with sporadic BLBC, providing genetic evidence for an interaction between ID4 and DNA damage repair pathways. These data link the interactions of ID4 with MDC1 to DNA damage repair in the aetiology of BLBC and HGSOV.
Nature | 2015
Hisham Mohammed; I. Alasdair Russell; Rory Stark; Oscar M. Rueda; Theresa E. Hickey; Gerard A. Tarulli; Aurelien A. Serandour; Stephen N. Birrell; Alejandra Bruna; Amel Saadi; Suraj Menon; James Hadfield; Michelle Pugh; Ganesh V. Raj; Gordon D. Brown; Clive D’Santos; Jessica L. L. Robinson; Grace O. Silva; Rosalind Launchbury; Charles M. Perou; John Stingl; Carlos Caldas; Wayne D. Tilley; Jason S. Carroll
This corrects the article DOI: 10.1038/nature14583