Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Aurélien Deniaud is active.

Publication


Featured researches published by Aurélien Deniaud.


Oncogene | 2008

Endoplasmic reticulum stress induces calcium-dependent permeability transition, mitochondrial outer membrane permeabilization and apoptosis

Aurélien Deniaud; O Sharaf el dein; Evelyne Maillier; D Poncet; Guido Kroemer; Christophe Lemaire; Catherine Brenner

The accumulation of Ca2+ in the mitochondrial matrix can stimulate oxidative phosphorylation, but can also, at high Ca2+ concentrations, transmit and amplify an apoptotic signal. Here, we characterized the capacity of physiological stimuli (for example, histamine and inositol-1,4,5-triphosphate) and inducers of endoplasmic reticulum (ER) stress (for example, A23187, thapsigargin and tunicamycin) to release Ca2+ from ER stores, induce mitochondrial Ca2+ accumulation, and trigger cell death in human cervix and colon carcinoma cell lines. Sustained Ca2+ accumulation in the mitochondrial matrix induced by ER stress triggered signs of proapoptotic mitochondrial alteration, namely permeability transition, dissipation of the electrochemical potential, matrix swelling, relocalization of Bax to mitochondria and the release of cytochrome c and apoptosis-inducing factor from mitochondria. In contrast, rapid and transient accumulation of Ca2+ induced by physiological stimuli failed to promote mitochondrial permeability transition and to affect cell viability. The specificity of this apoptosis pathway was validated in cells using a panel of pharmacological agents that chelate Ca2+ (BAPTA-AM) or inhibit inositol-1,4,5-trisphosphate receptor (IP3R; 2-aminoethoxydiphenyl borate), voltage-dependent anion channel (VDAC) (4,4′-diisothiocyanatostilbene-2,2′-disulfonate, NADH), the permeability transition pore (cyclosporin A and bongkrekic acid), caspases (z-VAD-fmk) and protein synthesis (cycloheximide). Finally, we designed an original cell-free system in which we confronted purified mitochondria and ER vesicles, and identified IP3R, VDAC and the permeability transition pore as key proteins in the ER-triggered proapoptotic mitochondrial membrane permeabilization process.


Oncogene | 2007

GAPDH, a novel regulator of the pro-apoptotic mitochondrial membrane permeabilization.

A Tarze; Aurélien Deniaud; M Le Bras; Evelyne Maillier; D Molle; N Larochette; N Zamzami; G Jan; Guido Kroemer; Catherine Brenner

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a pleiotropic enzyme that is overexpressed in apoptosis and in several human chronic pathologies. Here, we report that the protein accumulates in mitochondria during apoptosis, and induces the pro-apoptotic mitochondrial membrane permeabilization, a decisive event of the intrinsic pathway of apoptosis. GAPDH was localized by immunogold labeling and identified by matrix-assisted laser desorption/ionization-time of flight and nano liquid chromatography mass spectroscopy/mass spectroscopy in the mitochondrion of various tissues and origins. In isolated mitochondria, GAPDH can be imported and interact with the voltage-dependent anion channel (VDAC1), but not the adenine nucleotide translocase (ANT). The protein mediates a cyclosporin A-inhibitable permeability transition, characterized by a loss of the inner transmembrane potential, matrix swelling, permeabilization of the inner mitochondrial membrane and the release of two pro-apoptotic proteins, cytochrome c and apoptosis-inducing factor (AIF). This novel function of GAPDH might have implications for the understanding of mitochondrial biology, oncogenesis and apoptosis.


Cancer Research | 2006

Chemosensitization by knockdown of adenine nucleotide translocase-2.

Morgane Le Bras; Annie Borgne-Sanchez; Zahia Touat; Ossama Sharaf el dein; Aurélien Deniaud; Evelyne Maillier; Gael Lecellier; Dominique Rebouillat; Christophe Lemaire; Guido Kroemer; Etienne Jacotot; Catherine Brenner

Mitochondrial membrane permeabilization (MMP) is a rate-limiting step of apoptosis, including in anticancer chemotherapy. Adenine nucleotide translocase (ANT) mediates the exchange of ADP and ATP on the inner mitochondrial membrane in healthy cells. In addition, ANT can cooperate with Bax to form a lethal pore during apoptosis. Humans possess four distinct ANT isoforms, encoded by four genes, whose transcription depends on the cell type, developmental stage, cell proliferation, and hormone status. Here, we show that the ANT2 gene is up-regulated in several hormone-dependent cancers. Knockdown of ANT2 by RNA interference induced no major changes in the aspect of the mitochondrial network or cell cycle but provoked minor increase in mitochondrial transmembrane potential and reactive oxygen species level and reduced intracellular ATP concentration without affecting glycolysis. At expression and functional levels, ANT2 depletion was not compensated by other ANT isoforms. Most importantly, ANT2, but not ANT1, silencing facilitated MMP induction by lonidamine, a mitochondrion-targeted antitumor compound already used in clinical studies for breast, ovarian, glioma, and lung cancer as well as prostate adenoma. The combination of ANT2 knockdown with lonidamine induced apoptosis irrespective of the Bcl-2 status. These data identify ANT2 as an endogenous inhibitor of MMP and suggest that its selective inhibition could constitute a promising strategy of chemosensitization.


Oncogene | 2004

Dynamic evolution of the adenine nucleotide translocase interactome during chemotherapy-induced apoptosis

Florence Verrier; Aurélien Deniaud; Morgane LeBras; Didier Métivier; Guido Kroemer; Bernard Mignotte; Gwénaël Jan; Catherine Brenner

The mitochondrial permeability transition pore complex (PTPC) is involved in the control of the mitochondrial membrane permeabilization during apoptosis, necrosis and autophagy. Indeed, the adenine nucleotide translocator (ANT) and the voltage-dependent anion channel (VDAC), two major components of PTPC, are the targets of a variety of proapoptotic inducers. Using co-immunoprecipitation and proteomic analysis, we identified some of the interacting partners of ANT in several normal tissues and human cancer cell lines. During chemotherapy-induced apoptosis, some of these interactions were constant (e.g. ANT-VDAC), whereas others changed strongly concomitantly with the dissipation of the mitochondrial transmembrane potential and until nuclear degradation occurred (e.g. Bax, Bcl-2, subunits of the respiratory chain, a subunit of the phosphatase PP2A, phospholipase PLC β 4 and IP3 receptor). In addition, a glutathione-S-transferase (GST) interacts with ANT in normal tissue, in colon carcinoma cells and in vitro. This interaction is lost during apoptosis induction, suggesting that GST behaves as an endogenous repressor of PTPC and ANT pore opening. Thus, ANT is connected to mitochondrial proteins as well as to proteins from other organelles such as the endoplasmic reticulum forming a dynamic polyprotein complex. Changes within this ANT interactome coordinate the lethal response of cells to apoptosis induction.


Oncogene | 2003

The chemopreventive agent N-(4-hydroxyphenyl)retinamide induces apoptosis through a mitochondrial pathway regulated by proteins from the Bcl-2 family

Patricia Boya; Maria Celia Morales; Rosa-Ana Gonzalez-Polo; Karine Andreau; Isabelle Gourdier; Jean-Luc Perfettini; Nathanael Larochette; Aurélien Deniaud; Fanny Baran-Marszak; Remy Fagard; Jean Feuillard; Aintzane Asumendi; Martine Raphael; Bernard Pau; Catherine Brenner; Guido Kroemer

N-(4-hydroxyphenyl)retinamide (4-HPR, fenretinide) is a potent chemopreventive agent whose effect has been suggested to involve apoptosis induction. 4-HPR induces a loss of the mitochondrial transmembrane potential and the mitochondrial release of cytochrome c before caspase activation. Inhibition of mitochondrial membrane permeabilization (MMP) by transfection with Bcl-2 or the Cytomegalovirus UL37 gene product vMIA prevented caspase activation and cell death. In contrast to other retinoid derivatives, 4-HPR has no direct MMP-inducing effects when added to isolated mitochondria or when added to proteoliposomes containing the MMP-regulatory permeability transition pore complex (PTPC). Moreover, although reactive oxygen species (ROS) overproduction appears to be instrumental for 4-HPR-induced MMP and apoptosis, inhibition of the NF-κB or p53-mediated signal transduction pathways failed to modulate 4-HPR-induced apoptosis. 4-HPR was found to cause an antioxidant-inhibitable conformational change of both Bax and Bak, leading to the exposure of their N-termini and to the mitochondrial relocalization of Bax. Cells with a Bax−/− Bak−/− genotype were resistant against the 4-HPR-induced MMP, overproduction of ROS and cell death. Altogether, these data indicate that 4-HPR induces MMP through an ROS-mediated pathway that involves the obligatory contribution of the proapopotic Bcl-2 family members Bax and/or Bak.


Apoptosis | 2006

Inhibition of caspase-dependent mitochondrial permeability transition protects airway epithelial cells against mustard-induced apoptosis

Matthieu Sourdeval; Christophe Lemaire; Aurélien Deniaud; Laurent Taysse; Sébastien Daulon; Patrick Breton; Catherine Brenner; Emmanuelle Boisvieux-Ulrich; Francelyne Marano

In the present study, the toxicity of yperite, SM, and its structural analogue mechlorethamine, HN2, was investigated in a human bronchial epithelial cell line 16HBE. Cell detachment was initiated by caspase-2 activation, down-regulation of Bcl-2 and loss of mitochondrial membrane potential. Only in detached cells, mustards induced apoptosis associated with increase in p53 expression, Bax activation, decrease in Bcl-2 expression, opening of the mitochondrial permeability transition pore, release of cytochrome c, caspase-2, -3, -8, -9 and -13 activation and DNA fragmentation. Apoptosis, occurring only in detached cells, could be recognized as anoikis and the mitochondrion, involved both in cell detachment and subsequent cell death, appears to be a crucial checkpoint. Based on our understanding of the apoptotic pathway triggered by mustards, we demonstrated that inhibition of the mitochondrial pathway by ebselen, melatonin and cyclosporine A markedly prevented mustard-induced anoikis, pointing to these drugs as interesting candidates for the treatment of mustard-induced airway epithelial lesions.


ACS Nano | 2011

Proteins of the Innate Immune System Crystallize on Carbon Nanotubes but Are Not Activated

Wai Li Ling; Adrienn Bíró; Isabelle Bally; Pascale Tacnet; Aurélien Deniaud; Eric Doris; Philippe Frachet; Guy Schoehn; Eva Pebay-Peyroula; Gérard J. Arlaud

The classical pathway of complement is an essential component of the human innate immune system involved in the defense against pathogens as well as in the clearance of altered self-components. Activation of this pathway is triggered by C1, a multimolecular complex comprising a recognition protein C1q associated with a catalytic subunit C1s-C1r-C1r-C1s. We report here the direct observation of organized binding of C1 components C1q and C1s-C1r-C1r-C1s on carbon nanotubes, an ubiquitous component in nanotechnology research. Electron microscopy imaging showed individual multiwalled carbon nanotubes with protein molecules organized along the length of the sidewalls, often over 1 μm long. Less well-organized protein attachment was also observed on double-walled carbon nanotubes. Protein-solubilized nanotubes continued to attract protein molecules after their surface was fully covered. Despite the C1q binding properties, none of the nanotubes activated the C1 complex. We discuss these results on the adsorption mechanisms of macromolecules on carbon nanotubes and the possibility of using carbon nanotubes for structural studies of macromolecules. Importantly, the observations suggest that carbon nanotubes may interfere with the human immune system when entering the bloodstream. Our results raise caution in the applications of carbon nanotubes in biomedicine but may also open possibilities of novel applications concerning the many biochemical processes involving the versatile C1 macromolecule.


PLOS ONE | 2010

Lactococcus lactis, an Alternative System for Functional Expression of Peripheral and Intrinsic Arabidopsis Membrane Proteins

Annie Frelet-Barrand; Sylvain Boutigny; Lucas Moyet; Aurélien Deniaud; Daphné Seigneurin-Berny; Daniel Salvi; Florent Bernaudat; Pierre Richaud; Eva Pebay-Peyroula; Jacques Joyard; Norbert Rolland

Background Despite their functional and biotechnological importance, the study of membrane proteins remains difficult due to their hydrophobicity and their low natural abundance in cells. Furthermore, into established heterologous systems, these proteins are frequently only produced at very low levels, toxic and mis- or unfolded. Lactococcus lactis, a Gram-positive lactic bacterium, has been traditionally used in food fermentations. This expression system is also widely used in biotechnology for large-scale production of heterologous proteins. Various expression vectors, based either on constitutive or inducible promoters, are available for this system. While previously used to produce bacterial and eukaryotic membrane proteins, the ability of this system to produce plant membrane proteins was until now not tested. Methodology/Principal Findings The aim of this work was to test the expression, in Lactococcus lactis, of either peripheral or intrinsic Arabidopsis membrane proteins that could not be produced, or in too low amount, using more classical heterologous expression systems. In an effort to easily transfer genes from Gateway-based Arabidopsis cDNA libraries to the L. lactis expression vector pNZ8148, we first established a cloning strategy compatible with Gateway entry vectors. Interestingly, the six tested Arabidopsis membrane proteins could be produced, in Lactococcus lactis, at levels compatible with further biochemical analyses. We then successfully developed solubilization and purification processes for three of these proteins. Finally, we questioned the functionality of a peripheral and an intrinsic membrane protein, and demonstrated that both proteins were active when produced in this system. Conclusions/Significance Altogether, these data suggest that Lactococcus lactis might be an attractive system for the efficient and functional production of difficult plant membrane proteins.


Cell Death and Disease | 2012

HIV-1 Tat protein directly induces mitochondrial membrane permeabilization and inactivates cytochrome c oxidase.

Hervé Lecoeur; Annie Borgne-Sanchez; Olivier Chaloin; Ralph El-Khoury; Magali Brabant; Alain Langonne; Mathieu Porceddu; J-J Brière; Nelly Buron; Dominique Rebouillat; C Péchoux; Aurélien Deniaud; Catherine Brenner; J-P Briand; Sylviane Muller; P. Rustin; Etienne Jacotot

The Trans-activator protein (Tat) of human immunodeficiency virus (HIV) is a pleiotropic protein involved in different aspects of AIDS pathogenesis. As a number of viral proteins Tat is suspected to disturb mitochondrial function. We prepared pure synthetic full-length Tat by native chemical ligation (NCL), and Tat peptides, to evaluate their direct effects on isolated mitochondria. Submicromolar doses of synthetic Tat cause a rapid dissipation of the mitochondrial transmembrane potential (ΔΨm) as well as cytochrome c release in mitochondria isolated from mouse liver, heart, and brain. Accordingly, Tat decreases substrate oxidation by mitochondria isolated from these tissues, with oxygen uptake being initially restored by adding cytochrome c. The anion-channel inhibitor 4,4′-diisothiocyanostilbene-2,2′-disulfonic acid (DIDS) protects isolated mitochondria against Tat-induced mitochondrial membrane permeabilization (MMP), whereas ruthenium red, a ryanodine receptor blocker, does not. Pharmacologic inhibitors of the permeability transition pore, Bax/Bak inhibitors, and recombinant Bcl-2 and Bcl-XL proteins do not reduce Tat-induced MMP. We finally observed that Tat inhibits cytochrome c oxidase (COX) activity in disrupted mitochondria isolated from liver, heart, and brain of both mouse and human samples, making it the first described viral protein to be a potential COX inhibitor.


Biochimica et Biophysica Acta | 2011

Expression of a chloroplast ATP/ADP transporter in E. coli membranes: behind the Mistic strategy.

Aurélien Deniaud; Florent Bernaudat; Annie Frelet-Barrand; Céline Juillan-Binard; Thierry Vernet; Norbert Rolland; Eva Pebay-Peyroula

Eukaryotic membrane protein expression is still a major bottleneck for structural studies. Production in E. coli often leads to low expression level and/or aggregated proteins. In the last decade, strategies relying on new fusion protein expression revealed promising results. Fusion with the amphipatic Mistic protein has been described to favor expression in E. coli membranes. Although, this approach has already been reported for a few membrane proteins, little is known about the activity of the fused proteins. We used this strategy and obtained high expression levels of a chloroplast ATP/ADP transporter from A. thaliana (NTT1) and characterized its transport properties. NTT1 fused to Mistic has a very low transport activity which can be recovered after in vivo Mistic fusion cleavage. Moreover, detailed molecular characterization of purified NTT1 mature form, NTT1 fused to Mistic or NTT1 cleaved-off from this fusion highlights the correct fold of the latter one. Therefore, considering the higher quantity of purified NTT1 mature form obtained via the Mistic fusion approach, this is a valuable strategy for obtaining quantities of pure and active proteins that are adequate for structural studies.

Collaboration


Dive into the Aurélien Deniaud's collaboration.

Top Co-Authors

Avatar

Catherine Brenner

Sanford-Burnham Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar

Eva Pebay-Peyroula

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Isabelle Michaud-Soret

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Elisabeth Mintz

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Giulia Veronesi

European Institute of Oncology

View shared research outputs
Top Co-Authors

Avatar

Annie Borgne-Sanchez

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Florent Bernaudat

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Mireille Chevallet

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Thomas Gallon

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge