Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Aurélien Mercier is active.

Publication


Featured researches published by Aurélien Mercier.


Journal of Clinical Microbiology | 2010

Genotyping of Toxoplasma gondii Isolates with 15 Microsatellite Markers in a Single Multiplex PCR Assay

Daniel Ajzenberg; Frédéric Collinet; Aurélien Mercier; P. Vignoles; Marie-Laure Dardé

ABSTRACT We developed an easy-to-use method for genotyping Toxoplasma gondii isolates in a single multiplex PCR assay with 15 microsatellite markers. This method was validated by testing 26 reference isolates that had been characterized with other sets of markers.


PLOS Neglected Tropical Diseases | 2010

Additional haplogroups of Toxoplasma gondii out of Africa: population structure and mouse-virulence of strains from Gabon.

Aurélien Mercier; Sébastien Devillard; Barthélémy Ngoubangoye; Henri Bonnabau; Anne-Laure Bañuls; Patrick Durand; Bettina Salle; Daniel Ajzenberg; Marie-Laure Dardé

Background Toxoplasma gondii is found worldwide, but distribution of its genotypes as well as clinical expression of human toxoplasmosis varies across the continents. Several studies in Europe, North America and South America argued for a role of genotypes in the clinical expression of human toxoplasmosis. Genetic data concerning T. gondii isolates from Africa are scarce and not sufficient to investigate the population structure, a fundamental analysis for a better understanding of distribution, circulation, and transmission. Methodology/Principal Findings Seropositive animals originating from urban and rural areas in Gabon were analyzed for T. gondii isolation and genotyping. Sixty-eight isolates, including one mixed infection (69 strains), were obtained by bioassay in mice. Genotyping was performed using length polymorphism of 13 microsatellite markers located on 10 different chromosomes. Results were analyzed in terms of population structure by Bayesian statistical modeling, Neighbor-joining trees reconstruction based on genetic distances, F ST and linkage disequilibrium. A moderate genetic diversity was detected. Three haplogroups and one single genotype clustered 27 genotypes. The majority of strains belonged to one haplogroup corresponding to the worldwide Type III. The remaining strains were distributed into two haplogroups (Africa 1 and 3) and one single genotype. Mouse virulence at isolation was significantly different between haplogroups. Africa 1 haplogroup was the most virulent. Conclusion Africa 1 and 3 haplogroups were proposed as being new major haplogroups of T. gondii circulating in Africa. A possible link with strains circulating in South and Central America is discussed. Analysis of population structure demonstrated a local spread within a rural area and strain circulation between the main cities of the country. This circulation, favored by human activity could lead to genetic exchanges. For the first time, key epidemiological questions were addressed for the West African T. gondii population, using the high discriminatory power of microsatellite markers, thus creating a basis for further epidemiological and clinical investigations.


Veterinary Parasitology | 2009

Genetic characterization of Toxoplasma gondii from wild boar (Sus scrofa) in France.

Céline Richomme; Dominique Aubert; Emmanuelle Gilot-Fromont; Daniel Ajzenberg; Aurélien Mercier; C. Ducrot; Hubert Ferté; D. Delorme; Isabelle Villena

Toxoplasma gondii strains isolated from domestic animals and humans have been classified into three clonal lineages types I-III, with differences in terms of pathogenicity to mice. Much less is known on T. gondii genotypes in wild animals. In this report, genotypes of T. gondii isolated from wild boar (Sus scrofa) in France are described. During the hunting seasons 2002-2008, sera and tissues of individuals from two French regions, one continental and one insular, were tested for Toxoplasma infection. Antibodies to T. gondii were found in 26 (17.6%) of 148 wild boars using the modified agglutination test (MAT, positivity threshold: 1:24). Seroprevalence was 45.9% when considering a threshold of 1:6. Hearts of individuals with a positive agglutination (starting dilution 1:6) (n=60) were bioassayed in mice for isolation of viable T. gondii. In total, 21 isolates of T. gondii were obtained. Genotyping of the isolates using 3 PCR-restriction fragment length polymorphism markers (SAG1, SAG2 and GRA7) and 6 microsatellite loci analysis (TUB2, TgM-A, W35, B17, B18 and M33) revealed that all belonged to type II lineage. These results underline that wild boar may serve as an important reservoir for transmission of T. gondii, and that strains present in wildlife may not be different from strains from the domestic environment.


Archive | 2012

The Life Cycle of Toxoplasma gondii in the Natural Environment

Emmanuelle Gilot-Fromont; Maud Lélu; Marie-Laure Dardé; Céline Richomme; Dominique Aubert; Eve Afonso; Aurélien Mercier; Cécile Gotteland; Isabelle Villena

Toxoplasma gondii (T. gondii) is considered as one of the most successful parasites in the world. This success is first illustrated by its worldwide distribution, from arctic to hot desert areas, including isolated islands and in cities [1]. T. gondii is also among the most prevalent parasites in the global human population, with around one third of the population being infected [2]. Finally, it is able to infect, or be present in, the highest number of host species: any warm-blooded animal may act as an intermediate host, and oocysts may be transported by invertebrates such as filtrating mussels and oysters [1, 3].


PLOS Neglected Tropical Diseases | 2014

Geographic Separation of Domestic and Wild Strains of Toxoplasma gondii in French Guiana Correlates with a Monomorphic Version of Chromosome1a

Asis Khan; Daniel Ajzenberg; Aurélien Mercier; Magalie Demar; Stéphane Simon; Marie Laure Dardé; Qiuling Wang; Shiv K. Verma; Benjamin M. Rosenthal; J. P. Dubey; L. David Sibley

Background Previous studies have stressed the genetic divergence and high pathogenicity of strains of T. gondii from French Guiana. Although strains from coastal, human adapted environments (so called anthropized) resemble those found in other regions of the Caribbean, strains collected from inland jungle environment are genetically quite diverse. To better understand the composition of these distinct strain types, we undertook a more in depth analysis of T. gondii strains from French Guiana including profiling of chromosome 1a (Chr1a), which is often shared as a single monomorphic haplotype among lineages that are otherwise genetically distinct. Methodology/Principal Findings Comparison of intron sequences from selectively neutral genes indicated that anthropized strains were most closely related to clonal type III strains from North America, although wider RFLP analysis revealed that they are natural hybrids. In contrast, strains isolated from the jungle were genetically very diverse. Remarkably, nearly all anthropized strains contained the monomorphic version of Chr1a while wild stains were extremely divergent. The presence of the monomorphic Chr1a strongly correlated with greater transmission in domestic cats, although there were several exceptions, indicating that other factors also contribute. Anthropized strains also varied in their virulence in laboratory mice, and this pattern could not be explained by the simple combination of previously identified virulence factors, indicating that other genetic determinants influence pathogenicity. Conclusions/Significance Our studies underscore the marked genetic separation of anthropized and wild strains of T. gondii in French Guiana and provide additional evidence that the presence of Chr1a is associated with successful expansion of widely different lineages within diverse geographic areas. The predominance of Chr1a among strains in the anthropized environment suggests that it may confer an advantage for transmission in this environment, and thus potentially contribute to the spread of pathogenecity determinants.


Memorias Do Instituto Oswaldo Cruz | 2013

Toxoplasmosis seroprevalence in urban rodents: a survey in Niamey, Niger

Aurélien Mercier; Madougou Garba; Henri Bonnabau; Mamadou Kane; Jean-Pierre Rossi; Marie-Laure Dardé; Gauthier Dobigny

A serological survey of Toxoplasma gondii was conducted on 766 domestic and peridomestic rodents from 46 trapping sites throughout the city of Niamey, Niger. A low seroprevalence was found over the whole town with only 1.96% of the rodents found seropositive. However, differences between species were important, ranging from less than 2% in truly commensal Mastomys natalensis, Rattus rattus and Mus musculus, while garden-associated Arvicanthis niloticus displayed 9.1% of seropositive individuals. This is in line with previous studies on tropical rodents--that we reviewed here--which altogether show that Toxoplasma seroprevalence in rodent is highly variable, depending on many factors such as locality and/or species. Moreover, although we were not able to decipher statistically between habitat or species effect, such a contrast between Nile grass rats and the other rodent species points towards a potentially important role of environmental toxoplasmic infection. This would deserve to be further scrutinised since intra-city irrigated cultures are extending in Niamey, thus potentially increasing Toxoplasma circulation in this yet semi-arid region. As far as we are aware of, our study is one of the rare surveys of its kind performed in Sub-Saharan Africa and the first one ever conducted in the Sahel.


Infection, Genetics and Evolution | 2017

Phylogeography of Toxoplasma gondii points to a South American origin.

Emilie Bertranpetit; Thibaut Jombart; Emmanuel Paradis; Hilda Fátima de Jesus Pena; J. P. Dubey; C. Su; Aurélien Mercier; Sébastien Devillard; Daniel Ajzenberg

Toxoplasma gondii, a protozoan found ubiquitously in mammals and birds, is the etiologic agent of toxoplasmosis, a disease causing substantial public health burden worldwide, including about 200,000 new cases of congenital toxoplasmosis each year. Clinical severity has been shown to vary across geographical regions, with South America exhibiting the highest burden. Unfortunately, the drivers of these heterogeneities are still poorly understood, and the geographical origin and historical spread of the pathogen worldwide are currently uncertain. A worldwide sample of 168 T. gondii isolates gathered in 13 populations was sequenced for five fragments of genes (140 single nucleotide polymorphisms from 3153bp per isolate). Phylogeny based on Maximum likelihood methods with estimation of the time to the most recent common ancestor (TMRCA) and geostatistical analyses were performed for inferring the putative origin of T. gondii. We show that extant strains of the pathogen likely evolved from a South American ancestor, around 1.5 million years ago, and reconstruct the subsequent spread of the pathogen worldwide. This emergence is much more recent than the appearance of ancestral T. gondii, believed to have taken place about 11 My ago, and follows the arrival of felids in this part of the world. We posit that an ancestral lineage of T. gondii likely arrived in South America with felids and that the evolution of oral infectivity through carnivorism and the radiation of felids in this region enabled a new strain to outcompete the ancestral lineage and undergo a pandemic radiation.


Infection, Genetics and Evolution | 2017

Geographical distribution of Toxoplasma gondii genotypes in Asia: A link with neighboring continents

P. Chaichan; Aurélien Mercier; Lokman Galal; Aongart Mahittikorn; Frédéric Ariey; Serge Morand; Farid Boumédiène; Ruenruetai Udonsom; Azra Hamidović; Jean-Benjamin Murat; Yaowalark Sukthana; Marie-Laure Dardé

Defining the pattern of genetic diversity of Toxoplasma gondii is important to understand its worldwide distribution. During the last decades, a large number of studies have been published on Toxoplasma genotypes circulating in Europe, in North and South America. Two continents are still largely unexplored, Africa and, to a less extent, Asia. In this last continent, an increasing number of publications reported genotypes circulating in diverse provinces of China, but very few data are available for other Asian countries. After a systematic database search, 47 papers related to T. gondii genotypes in Asia were analyzed. Genetic characterization of DNA was performed by microsatellite markers, or more usually by a multiplex PCR using 11 PCR-RFLP markers, allowing data comparison to draw a first global picture of the population structure of this parasite throughout Asia. Overall, 390 isolates or DNA extracts were completely typed by PCR-RFLP and/or microsatellite marker methods, revealing 36 different PCR-RFLP or equivalent microsatellite genotypes: 15 genotypes identified by a ToxoDB number and 21 atypical or unique genotypes. The most common genotype found in Asia is the genotype ToxoDB#9 (Chinese 1). The clonal types I, II and II variant, and III were also commonly found in Asia. The geographical distribution of these genotypes across Asia may reflect either a continuum with Europe for the western part of Asia (presence of Type II), or the circulation of strains through animal migration or human activities between Africa and the Southwestern part of Asia (Africa 1 genotype in Turkey or ToxoDB#20 both I Sri-Lanka and in Ethiopia or Egypt). Although there are some indications of a genetic population structure in Southeast Asian countries different from the rest of Asia, more studies in this tropical part of Asia will be necessary for a region which represent as well as Africa one of the missing links of the T. gondii genetic diversity.


Veterinary Parasitology | 2017

First genetic characterization of Toxoplasma gondii in stray cats from Algeria

Feriel Yekkour; Dominique Aubert; Aurélien Mercier; Jean-Benjamin Murat; Mammar Khames; Paul Nguewa; Khatima Ait-Oudhia; Isabelle Villena; Zahida Bouchene

Toxoplasmosis is a parasitic disease with worldwide distribution and a major public health problem. In Algeria, no data are currently available about genotypes of Toxoplasma gondii isolated from animals or humans. The present study assesses for the first time the seroprevalence of toxoplasmosis in stray cats, and provides molecular characterization of T. gondii strains circulating in this feline population in Algiers, the capital city of Algeria. Sera from 96 stray cats were tested for the presence of antibodies against T. gondii using the modified agglutination test. The seroprevalence was 50% (48/96) using 1:6 as the positivity cut-off. Different organs samples from stray cats, including heart samples, were tested for the presence of Toxoplasma DNA using real-time PCR. T. Gondii DNA was detected in 90.6% (87/96) of hearts. Of these parasitic DNAs, 22 were submitted to genotyping through the analysis of 15 microsatellite markers. The identified genotypes (12 of 22) mainly belonged to the type II lineage.


Trends in Parasitology | 2017

Toxoplasma and Africa: One Parasite, Two Opposite Population Structures

Lokman Galal; Daniel Ajzenberg; Azra Hamidović; Marie-Fleur Durieux; Marie-Laure Dardé; Aurélien Mercier

Exploring the genetic diversity of Toxoplasma gondii is essential for an understanding of its worldwide distribution and the determinants of its evolution. Africa remains one of the least studied areas of the world regarding T. gondii genetic diversity. This review has compiled published data on T. gondii strains from Africa to generate a comprehensive map of their continent-wide geographical distribution. The emerging picture about T. gondii strain distribution in Africa suggests a geographical separation of the parasite populations across the continent. We discuss the potential role of a number of factors in shaping this structure. We finally suggest the next steps towards a better understanding of Toxoplasma epidemiology in Africa in light of the strains circulating on this continent.

Collaboration


Dive into the Aurélien Mercier's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dominique Aubert

University of Reims Champagne-Ardenne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Isabelle Villena

French Institute of Health and Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge