Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Aurora Aiello is active.

Publication


Featured researches published by Aurora Aiello.


Journal of Clinical Investigation | 2009

Endothelial NOS, estrogen receptor β, and HIFs cooperate in the activation of a prognostic transcriptional pattern in aggressive human prostate cancer

Simona Nanni; Valentina Benvenuti; Annalisa Grasselli; Carmen Priolo; Aurora Aiello; Stefania Mattiussi; Claudia Colussi; Vittoria Lirangi; Barbara Illi; Manuela D’Eletto; Anna Maria Cianciulli; Michele Gallucci; Piero De Carli; Steno Sentinelli; Marcella Mottolese; Paolo Carlini; Lidia Strigari; Stephen Finn; Elke Mueller; Giorgio Arcangeli; Carlo Gaetano; Maurizio C. Capogrossi; Raffaele Perrone Donnorso; Silvia Bacchetti; Ada Sacchi; Alfredo Pontecorvi; Massimo Loda; Antonella Farsetti

The identification of biomarkers that distinguish between aggressive and indolent forms of prostate cancer (PCa) is crucial for diagnosis and treatment. In this study, we used cultured cells derived from prostate tissue from patients with PCa to define a molecular mechanism underlying the most aggressive form of PCa that involves the functional activation of eNOS and HIFs in association with estrogen receptor beta (ERbeta). Cells from patients with poor prognosis exhibited a constitutively hypoxic phenotype and increased NO production. Upon estrogen treatment, formation of ERbeta/eNOS, ERbeta/HIF-1alpha, or ERbeta/HIF-2alpha combinatorial complexes led to chromatin remodeling and transcriptional induction of prognostic genes. Tissue microarray analysis, using an independent cohort of patients, established a hierarchical predictive power for these proteins, with expression of eNOS plus ERbeta and nuclear eNOS plus HIF-2alpha being the most relevant indicators of adverse clinical outcome. Genetic or pharmacologic modulation of eNOS expression and activity resulted in reciprocal conversion of the transcriptional signature in cells from patients with bad or good outcome, respectively, highlighting the relevance of eNOS in PCa progression. Our work has considerable clinical relevance, since it may enable the earlier diagnosis of aggressive PCa through routine biopsy assessment of eNOS, ERbeta, and HIF-2alpha expression. Furthermore, proposing eNOS as a therapeutic target fosters innovative therapies for PCa with NO inhibitors, which are employed in preclinical trials in non-oncological diseases.


Circulation Research | 2008

Estrogen Receptor-α and Endothelial Nitric Oxide Synthase Nuclear Complex Regulates Transcription of Human Telomerase

Annalisa Grasselli; Simona Nanni; Claudia Colussi; Aurora Aiello; Valentina Benvenuti; Gianluca Ragone; Fabiola Moretti; Ada Sacchi; Silvia Bacchetti; Carlo Gaetano; Maurizio C. Capogrossi; Alfredo Pontecorvi; Antonella Farsetti

We report that in endothelial cells, the angiogenic effect of 17&bgr;-estradiol (E2) is inhibited by the estrogen receptor (ER) antagonist ICI or the NO synthase (NOS) inhibitor 7-nitroindazole via downregulation of hTERT, the telomerase catalytic subunit, suggesting that E2 and NO are involved in controlling hTERT transcription. Quantitative Real-Time PCR and chromatin immunoprecipitations in E2-treated human umbilical vein endothelial cells, showed recruitment of ERs on the hTERT promoter and concomitant enrichment in histone 3 methylation at Lysine 79, a modification associated with transcription-competent chromatin. Confocal microscopy and re-chromatin immunoprecipitations revealed that on E2 induction, endothelial (e)NOS rapidly localized into the nucleus and associated with ER&agr; on the hTERT promoter. Transfections of a constitutively active eNOS mutant (S1177D) strongly induced the hTERT promoter, indicating a direct role of the protein in hTERT transcriptional regulation. Mutation of the estrogen response element in the promoter abolished response to both ERs and active eNOS, demonstrating that the estrogen response element integrity is required for hTERT regulation by these factors. To investigate this novel regulation in a reduced NO environment, pulmonary endothelial cells were isolated from eNOS−/− mice and grown with/without E2. In wild-type cells, E2 significantly increased telomerase activity. In eNOS−/− cells, basal telomerase activity was rescued by exogenous eNOS or an NO donor, whereas responsiveness to E2 demanded the active protein. In conclusion, we document the novel findings of a combinatorial eNOS/ER&agr; complex at the hTERT estrogen response element site and that active eNOS and ligand-activated ERs cooperate in regulating hTERT expression in the endothelium.


PLOS ONE | 2010

Zinc Downregulates HIF-1α and Inhibits Its Activity in Tumor Cells In Vitro and In Vivo

Lavinia Nardinocchi; Valentina Pantisano; Rosa Puca; Manuela Porru; Aurora Aiello; Annalisa Grasselli; Carlo Leonetti; Michal Safran; Gideon Rechavi; David Givol; Antonella Farsetti; Gabriella D'Orazi

Background Hypoxia inducible factor-1α (HIF-1α) is responsible for the majority of HIF-1-induced gene expression changes under hypoxia and for the “angiogenic switch” during tumor progression. HIF-1α is often upregulated in tumors leading to more aggressive tumor growth and chemoresistance, therefore representing an important target for antitumor intervention. We previously reported that zinc downregulated HIF-1α levels. Here, we evaluated the molecular mechanisms of zinc-induced HIF-1α downregulation and whether zinc affected HIF-1α also in vivo. Methodology/Principal Findings Here we report that zinc downregulated HIF-1α protein levels in human prostate cancer and glioblastoma cells under hypoxia, whether induced or constitutive. Investigations into the molecular mechanisms showed that zinc induced HIF-1α proteasomal degradation that was prevented by treatment with proteasomal inhibitor MG132. HIF-1α downregulation induced by zinc was ineffective in human RCC4 VHL-null renal carcinoma cell line; likewise, the HIF-1αP402/P564A mutant was resistant to zinc treatment. Similarly to HIF-1α, zinc downregulated also hypoxia-induced HIF-2α whereas the HIF-1β subunit remained unchanged. Zinc inhibited HIF-1α recruitment onto VEGF promoter and the zinc-induced suppression of HIF-1-dependent activation of VEGF correlated with reduction of glioblastoma and prostate cancer cell invasiveness in vitro. Finally, zinc administration downregulated HIF-1α levels in vivo, by bioluminescence imaging, and suppressed intratumoral VEGF expression. Conclusions/Significance These findings, by demonstrating that zinc induces HIF-1α proteasomal degradation, indicate that zinc could be useful as an inhibitor of HIF-1α in human tumors to repress important pathways involved in tumor progression, such as those induced by VEGF, MDR1, and Bcl2 target genes, and hopefully potentiate the anticancer therapies.


Molecular Endocrinology | 2011

Silencing of GSTP1, a prostate cancer prognostic gene, by the estrogen receptor-β and endothelial nitric oxide synthase complex.

Agnese Re; Aurora Aiello; Simona Nanni; Annalisa Grasselli; Valentina Benvenuti; Valentina Pantisano; Lidia Strigari; Claudia Colussi; Sarah Ciccone; Anna Paola Mazzetti; Francesco Pierconti; Francesco Pinto; Pierfrancesco Bassi; Marcello Gallucci; Steno Sentinelli; Francesco Trimarchi; Silvia Bacchetti; Alfredo Pontecorvi; M Lo Bello; Antonella Farsetti

We recently identified in prostate tumors (PCa) a transcriptional prognostic signature comprising a significant number of genes differentially regulated in patients with worse clinical outcome. Induction of up-regulated genes was due to chromatin remodeling by a combinatorial complex between estrogen receptor (ER)-β and endothelial nitric oxide synthase (eNOS). Here we show that this complex can also repress transcription of prognostic genes that are down-regulated in PCa, such as the glutathione transferase gene GSTP1. Silencing of GSTP1 is a common early event in prostate carcinogenesis, frequently caused by promoter hypermethylation. We validated loss of glutathione transferase (GST) P1-1 expression in vivo, in tissue microarrays from a retrospective cohort of patients, and correlated it with decreased disease-specific survival. Furthermore, we show that in PCa cultured cells ERβ/eNOS causes GSTP1 repression by being recruited at estrogen responsive elements in the gene promoter with consequential remodeling of local chromatin. Treatment with ERβ antagonist or its natural ligand 5α-androstane-3β,17β-diol, eNOS inhibitors or ERβ small interference RNA abrogated the binding and reversed GSTP1 silencing, demonstrating the direct involvement of the complex. In vitro, GSTP1 silencing by ERβ/eNOS was specific for cells from patients with worse clinical outcome where it appeared the sole mechanism regulating GSTP1 expression because no promoter hypermethylation was present. However, in vivo chromatin immunoprecipitation assays on fresh PCa tissues demonstrated that silencing by ERβ/eNOS can coexist with promoter hypermethylation. Our findings reveal that the ERβ/eNOS complex can exert transcriptional repression and suggest that this may represent an epigenetic event favoring inactivation of the GSTP1 locus by methylation. Moreover, abrogation of ERβ/eNOS function by 3β-adiol emphasizes the significance of circulating or locally produced sex steroid hormones or their metabolites in PCa biology with relevant clinical/therapeutic implications.


Scientific Reports | 2016

MALAT1 and HOTAIR Long Non-Coding RNAs Play Opposite Role in Estrogen-Mediated Transcriptional Regulation in Prostate Cancer Cells

Aurora Aiello; Lorenza Bacci; Agnese Re; Cristian Ripoli; Francesco Pierconti; Francesco Pinto; Riccardo Masetti; Claudio Grassi; Carlo Gaetano; Pierfrancesco Bassi; Alfredo Pontecorvi; Simona Nanni; Antonella Farsetti

In the complex network of nuclear hormone receptors, the long non-coding RNAs (lncRNAs) are emerging as critical determinants of hormone action. Here we investigated the involvement of selected cancer-associated lncRNAs in Estrogen Receptor (ER) signaling. Prior studies by Chromatin Immunoprecipitation (ChIP) Sequencing showed that in prostate cancer cells ERs form a complex with the endothelial nitric oxide synthase (eNOS) and that in turn these complexes associate with chromatin in an estrogen-dependent fashion. Among these associations (peaks) we focused our attention on those proximal to the regulatory region of HOTAIR and MALAT1. These transcripts appeared regulated by estrogens and able to control ERs function by interacting with ERα/ERβ as indicated by RNA-ChIP. Further studies performed by ChIRP revealed that in unstimulated condition, HOTAIR and MALAT1 were present on pS2, hTERT and HOTAIR promoters at the ERE/eNOS peaks. Interestingly, upon treatment with17β-estradiol HOTAIR recruitment to chromatin increased significantly while that of MALAT1 was reduced, suggesting an opposite regulation and function for these lncRNAs. Similar results were obtained in cells and in an ex vivo prostate organotypic slice cultures. Overall, our data provide evidence of a crosstalk between lncRNAs, estrogens and estrogen receptors in prostate cancer with important consequences on gene expression regulation.


PLOS ONE | 2013

Estrogen-Dependent Dynamic Profile of eNOS-DNA Associations in Prostate Cancer

Simona Nanni; Aurora Aiello; Agnese Re; Alessandro Guffanti; Valentina Benvenuti; Claudia Colussi; Luis Jaime Castro-Vega; Armando Felsani; Arturo Londoño-Vallejo; Maurizio C. Capogrossi; Silvia Bacchetti; Carlo Gaetano; Alfredo Pontecorvi; Antonella Farsetti

In previous work we have documented the nuclear translocation of endothelial NOS (eNOS) and its participation in combinatorial complexes with Estrogen Receptor Beta (ERβ) and Hypoxia Inducible Factors (HIFs) that determine localized chromatin remodeling in response to estrogen (E2) and hypoxia stimuli, resulting in transcriptional regulation of genes associated with adverse prognosis in prostate cancer (PCa). To explore the role of nuclear eNOS in the acquisition of aggressive phenotype in PCa, we performed ChIP-Sequencing on chromatin-associated eNOS from cells from a primary tumor with poor outcome and from metastatic LNCaP cells. We found that: 1. the eNOS-bound regions (peaks) are widely distributed across the genome encompassing multiple transcription factors binding sites, including Estrogen Response Elements. 2. E2 increased the number of peaks, indicating hormone-dependent eNOS re-localization. 3. Peak distribution was similar with/without E2 with ≈ 55% of them in extragenic DNA regions and an intriguing involvement of the 5′ domain of several miRs deregulated in PCa. Numerous potentially novel eNOS-targeted genes have been identified suggesting that eNOS participates in the regulation of large gene sets. The parallel finding of downregulation of a cluster of miRs, including miR-34a, in PCa cells associated with poor outcome led us to unveil a molecular link between eNOS and SIRT1, an epigenetic regulator of aging and tumorigenicity, negatively regulated by miR-34a and in turn activating eNOS. E2 potentiates miR-34a downregulation thus enhancing SIRT1 expression, depicting a novel eNOS/SIRT1 interplay fine-tuned by E2-activated ER signaling, and suggesting that eNOS may play an important role in aggressive PCa.


Cancer Biology & Therapy | 2012

HIPK2 downregulates vimentin and inhibits breast cancer cell invasion

Cristina Nodale; Michal Sheffer; Jasmine Jacob-Hirsch; Valentina Folgiero; Rita Falcioni; Aurora Aiello; Alessia Garufi; Gideon Rechavi; David Givol; Gabriella D'Orazi

Vimentin, a mesenchymal marker, is frequently overexpressed in epithelial carcinomas undergoing epithelial to mesenchymal transition (EMT), a condition correlated with invasiveness and poor prognosis. Therefore, vimentin is a potential molecular target for anticancer therapy. Emerging studies in experimental models underscore the functions of homeodomain-interacting protein kinase 2 (HIPK2) as potential oncosuppressor by acting as transcriptional corepressor or catalytic activator of molecules involved in apoptosis and response to antitumor drugs. However, an involvement of HIPK2 in limiting tumor invasion remains to be elucidated. This study, by starting with a microarray analysis, demonstrates that HIPK2 downregulates vimentin expression in invasive, vimentin-positive, MDA-MB-231 breast cancer cells and in the non-invasive MCF7 breast cancer cells subjected to chemical hypoxia, a drive for mesenchymal shift and tumor invasion. At functional level, vimentin downregulation by HIPK2 correlates with inhibition of breast tumor cell invasion. Together, these data show that vimentin is a novel target for HIPK2 repressor function and that HIPK2-mediated vimentin downregulation can contribute to inhibition of breast cancer cells invasion that might be applied in clinical therapy.


Nucleic Acids Research | 2015

A basal level of DNA damage and telomere deprotection increases the sensitivity of cancer cells to G-quadruplex interactive compounds

Erica Salvati; Angela Rizzo; Sara Iachettini; Pasquale Zizza; Chiara Cingolani; Carmen D'Angelo; Manuela Porru; Chiara Mondello; Aurora Aiello; Antonella Farsetti; Eric Gilson; Carlo Leonetti; Annamaria Biroccio

Here, with the aim of obtaining insight into the intriguing selectivity of G-quadruplex (G4) ligands toward cancer compared to normal cells, a genetically controlled system of progressive transformation in human BJ fibroblasts was analyzed. Among the different comparative evaluations, we found a progressive increase of DNA damage response (DDR) markers throughout the genome from normal toward immortalized and transformed cells. More interestingly, sensitivity to G4 ligands strongly correlated with the presence of a basal level of DNA damage, including at the telomeres, where the chromosome ends were exposed to the DDR without concurrent induction of DNA repair activity, as revealed by the lack of 53BP1 recruitment and telomere aberrations. The link between telomere uncapping and the response to G4 stabilization was directly assessed by showing that a partial TRF2 depletion, causing a basal level of telomere localized DDR, rendered telomerized fibroblasts prone to G4-induced telomere damage and anti-proliferative defects. Taken together these data strongly indicate that the presence of a basal level of telomere-associated DDR is a determinant of susceptibility to G4 stabilization.


Endocrinology | 2017

Transcription Factor CREM Mediates High Glucose Response in Cardiomyocytes and in a Male Mouse Model of Prolonged Hyperglycemia

Saviana Antonella Barbati; Claudia Colussi; Lorenza Bacci; Aurora Aiello; Agnese Re; Egidio Stigliano; Andrea M. Isidori; Claudio Grassi; Alfredo Pontecorvi; Antonella Farsetti; Carlo Gaetano; Simona Nanni

This study aims at investigating the epigenetic landscape of cardiomyocytes exposed to elevated glucose levels. High glucose (30 mM) for 72 hours determined some epigenetic changes in mouse HL-1 and rat differentiated H9C2 cardiomyocytes including upregulation of class I and III histone deacetylase protein levels and activity, inhibition of histone acetylase p300 activity, increase in histone H3 lysine 27 trimethylation, and reduction in H3 lysine 9 acetylation. Gene expression analysis focused on cardiotoxicity revealed that high glucose induced markers associated with tissue damage, fibrosis, and cardiac remodeling such as Nexilin (NEXN), versican, cyclic adenosine 5-monophosphate-responsive element modulator (CREM), and adrenoceptor α2A (ADRA2). Notably, the transcription factor CREM was found to be important in the regulation of cardiotoxicity-associated genes as assessed by specific small interfering RNA and chromatin immunoprecipitation experiments. In CD1 mice, made hyperglycemic by streptozotoicin (STZ) injection, cardiac structural alterations were evident at 6 months after STZ treatment and were associated with a significant increase of H3 lysine 27 trimethylation and reduction of H3 lysine 9 acetylation. Consistently, NEXN, CREM, and ADRA2 expression was significantly induced at the RNA and protein levels. Confocal microscopy analysis of NEXN localization showed this protein irregularly distributed along the sarcomeres in the heart of hyperglycemic mice. This evidence suggested a structural alteration of cardiac Z-disk with potential consequences on contractility. In conclusion, high glucose may alter the epigenetic landscape of cardiac cells. Sildenafil, restoring guanosine 3, 5-cyclic monophosphate levels, counteracted the increase of CREM and NEXN, providing a protective effect in the presence of hyperglycemia.


Endocrine | 2016

Anacardic acid and thyroid hormone enhance cardiomyocytes production from undifferentiated mouse ES cells along functionally distinct pathways

Agnese Re; Simona Nanni; Aurora Aiello; Serena Granata; Claudia Colussi; Giulia Campostrini; Francesco Spallotta; Stefania Mattiussi; Valentina Pantisano; Carmen D’Angelo; Annamaria Biroccio; Alessandra Rossini; Andrea Barbuti; Dario DiFrancesco; Francesco Trimarchi; Alfredo Pontecorvi; Carlo Gaetano; Antonella Farsetti

The epigenetics of early commitment to embryonal cardiomyocyte is poorly understood. In this work, we compared the effect of thyroid hormone and that of anacardic acid, a naturally occurring histone acetylase inhibitor, or both in combination, on mouse embryonic stem cells (mES) differentiating into embryonal cardiomyocyte by embryoid bodies (EBs) formation. Although the results indicated that anacardic acid (AA) and thyroid hormone were both efficient in promoting cardiomyocyte differentiation, we noticed that a transient exposure of mES to AA alone was sufficient to enlarge the beating areas of EBs compared to those of untreated controls. This effect was associated with changes in the chromatin structure at the promoters of specific cardiomyogenic genes. Among them, a rapid induction of the transcription factor Castor 1 (CASZ1), important for cardiomyocytes differentiation and maturation during embryonic development, was observed in the presence of AA. In contrast, thyroid hormone (T3) was more effective in stimulating spontaneous firing, thus suggesting a role in the production of a population of cardiomyocyte with pacemaker properties. In conclusion, AA and thyroid hormone both enhanced cardiomyocyte formation along in apparently distinct pathways.

Collaboration


Dive into the Aurora Aiello's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alfredo Pontecorvi

Catholic University of the Sacred Heart

View shared research outputs
Top Co-Authors

Avatar

Simona Nanni

Catholic University of the Sacred Heart

View shared research outputs
Top Co-Authors

Avatar

Carlo Gaetano

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar

Agnese Re

National Research Council

View shared research outputs
Top Co-Authors

Avatar

Claudia Colussi

The Catholic University of America

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Annalisa Grasselli

Catholic University of the Sacred Heart

View shared research outputs
Top Co-Authors

Avatar

Claudio Grassi

Catholic University of the Sacred Heart

View shared research outputs
Researchain Logo
Decentralizing Knowledge