Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Aurora Gómez is active.

Publication


Featured researches published by Aurora Gómez.


Cell Death and Disease | 2011

IFN-γ signaling, with the synergistic contribution of TNF-α, mediates cell specific microglial and astroglial activation in experimental models of Parkinson's disease.

Carlos Barcia; Carmen María Brugarolas Ros; Valentina Annese; Aurora Gómez; Francisco Ros-Bernal; D Aguado-Llera; M E Martínez-Pagán; V de Pablos; Emiliano Fernández-Villalba; María-Trinidad Herrero

To through light on the mechanisms underlying the stimulation and persistence of glial cell activation in Parkinsonism, we investigate the function of IFN-γ and TNF-α in experimental models of Parkinsons disease and analyze their relation with local glial cell activation. It was found that IFN-γ and TNF-α remained higher over the years in the serum and CNS of chronic Parkinsonian macaques than in untreated animals, accompanied by sustained glial activation (microglia and astroglia) in the substantia nigra pars compacta. Importantly, Parkinsonian monkeys showed persistent and increasing levels of IFN-γR signaling in both microglial and astroglial cells. In addition, experiments performed in IFN-γ and TNF-α KO mice treated with MPTP revealed that, even before dopaminergic cell death can be observed, the presence of IFN-γ and TNF-α is crucial for microglial and astroglial activation, and, together, they have an important synergistic role. Both cytokines were necessary for the full level of activation to be attained in both microglial and astroglial cells. These results demonstrate that IFN-γ signaling, together with the contribution of TNF-α, have a critical and cell-specific role in stimulating and maintaining glial cell activation in Parkinsonism.


Scientific Reports | 2012

ROCK/Cdc42-mediated microglial motility and gliapse formation lead to phagocytosis of degenerating dopaminergic neurons in vivo

Carlos Barcia; Carmen María Brugarolas Ros; Valentina Annese; María Angeles Carrillo-de Sauvage; Francisco Ros-Bernal; Aurora Gómez; Jose Yuste; Carmen María Campuzano; Vicente de Pablos; Emiliano Fernández-Villalba; Maria Trinidad Herrero

The role of microglial motility in the context of adult neurodegeneration is poorly understood. In the present work, we investigated the microanatomical details of microglia-neuron interactions in an experimental mouse model of Parkinsons disease following the intraperitoneal injection of MPTP. The specific intoxication of dopaminergic neurons induces the cellular polarization of microglia, leading to the formation of body-to-body neuron-glia contacts, called gliapses, which precede neuron elimination. Inhibiting ROCK/Cdc42-mediated microglial motility in vivo blocks the activating features of microglia, such as increased cell size and number of filopodia and diminishes their phagocyting/secreting domains, as the reduction of the Golgi apparatus and the number of microglia-neuron contacts has shown. High-resolution confocal images and three-dimensional rendering demonstrate that microglia engulf entire neurons at one-to-one ratio, and the microglial cell body participates in the formation of the phagocytic cup, engulfing and eliminating neurons in areas of dopaminergic degeneration in adult mammals.


American Journal of Pathology | 2009

Infiltrating CTLs in human glioblastoma establish immunological synapses with tumorigenic cells.

Carlos Barcia; Aurora Gómez; José M. Gallego-Sanchez; Ana Perez-Vallés; Maria G. Castro; Pedro R. Lowenstein; Maria Trinidad Herrero

The immunological synapse between T cells and tumor cells is believed to be important for effective tumor clearance. However, the immunological synapse has never been imaged or analyzed in detail in human tissue. In this work, intercellular interactions between T cells and tumor cells were analyzed in detail in human glioblastoma. After characterization of the population of infiltrating T cells by multiple immunofluorescence staining and stereological quantification, the microanatomy of T cell-tumor cell intercellular communication was analyzed in detail using confocal microscopy and three-dimensional rendering. Cytotoxic T lymphocytes that infiltrated human glioblastoma underwent rearrangement when in contact with tumor cells, to form a three-dimensional structure in the intercellular contact area; this was characterized by microclusters of the CD3/TCR complex, re-arrangement of the cytoskeleton, and granzyme B polarization. In addition, such T cell-targeted cells show fragmentation of the microtubular system and increased expression levels of cleaved caspase 3, which suggests that cytotoxic T lymphocytes likely provoke changes in tumor cells and subsequently induce cell death. These results show that the formation of the cytotoxic T lymphocyte immunological synapse occurs in human tissue and may be relevant for the effective immune-mediated clearance of tumorigenic cells, therefore opening up new avenues for glioblastoma immunotherapy.


PLOS ONE | 2012

CCL2-expressing astrocytes mediate the extravasation of T lymphocytes in the brain. Evidence from patients with glioma and experimental models in vivo.

María Angeles Carrillo-de Sauvage; Aurora Gómez; Carmen María Brugarolas Ros; Francisco Ros-Bernal; Eduardo D. Martín; Ana Perez-Vallés; José M. Gallego-Sanchez; Emiliano Fernández-Villalba; Carlos Barcia; María-Trinidad Herrero

CCL2 is a chemokine involved in brain inflammation, but the way in which it contributes to the entrance of lymphocytes in the parenchyma is unclear. Imaging of the cell type responsible for this task and details on how the process takes place in vivo remain elusive. Herein, we analyze the cell type that overexpresses CCL2 in multiple scenarios of T-cell infiltration in the brain and in three different species. We observe that CCL2+ astrocytes play a part in the infiltration of T-cells in the brain and our analysis shows that the contact of T-cells with perivascular astrocytes occurs, suggesting that may be an important event for lymphocyte extravasation.


Neuropharmacology | 2012

7-Nitroindazole down-regulates dopamine/DARPP-32 signaling in neostriatal neurons in a rat model of Parkinson's disease

Jose Yuste; M.B. Echeverry; Francisco Ros-Bernal; Aurora Gómez; Carmen María Brugarolas Ros; C.M. Campuzano; Emiliano Fernández-Villalba; María-Trinidad Herrero

Neuronal nitric oxide synthase (nNOS) is involved in the regulation of diverse intracellular messenger systems in the brain. Nitric Oxide (NO) contributes to inducing signaling cascades that involve a complex pattern of phosphorylation of DARPP-32 (in Thr-34), which controls the phosphoproteins involved in neuronal activation. However, the role of NO in the pathophysiology of Parkinsons disease (PD) and its effect in striatal neurons have been scarcely explored. In the present work, we investigate the effects of a nitric oxide synthase (NOS) inhibitor, 7-nitroindazole (7-NI) in the nigrostriatal pathway of striatal 6-hydroxydopamine (6-OHDA) lesioned rats. Our quantitative histological findings show that treatment with 7-NI significantly reduced 6-OHDA-induced dopaminergic damage in the dorsolateral striatum and Substantia Nigra pars compacta (SNpc). Moreover, 6-OHDA lesioned rats show a significant increase of nNOS(+) and Phospho-Thr34-DARPP-32(+) cells, accompanied by a consequent decrease of total DARPP-32(+) cells, which suggests an imbalance of NO activity in the DA-depleted striatum, which is also reflected in behavioral studies. Importantly, these effects are reverted in the group treated with 7-NI. These results show a clear link between the state of phosphorylation of DARPP-32 and parkinsonism, which is regulated by nNOS. This new evidence suggests a prominent role for nitric oxide in the neurotransmitter balance within the basal ganglia in the pathophysiology of experimental parkinsonism.


Journal of Neuroimmunology | 2013

Persistent phagocytic characteristics of microglia in the substantia nigra of long-term Parkinsonian macaques

Carlos Barcia; Carmen María Brugarolas Ros; Francisco Ros-Bernal; Aurora Gómez; Valentina Annese; María Angeles Carrillo-de Sauvage; Jose Yuste; Carmen María Campuzano; Vicente de Pablos; Emiliano Fernández-Villalba; Maria Trinidad Herrero

Patients with Parkinsons disease show persistent microglial activation in the areas of the brain where the degeneration of dopaminergic neurons takes place. The reason for maintaining this activated state is still unknown, but it is thought that this persistent microglial activation may contribute to the degeneration of dopaminergic neurons. In this study, we report the microanatomical details of microglia and the relationship between microglia and neurons in the substantia nigra pars compacta of Parkinsonian monkeys years after insult with MPTP. We observed that microglial cells appear polarized toward dopaminergic neurons in MPTP-treated macaques compared to untreated animals and present clear phagocytic characteristics, such as engulfing gliaptic contacts, an increase in Golgi apparatus protein machinery and ball-and-chain phagocytic buds. These results demonstrate that activated microglia maintain phagocytic characteristics years after neurotoxin insult, and phagocytosis may be a key contributor to the neurodegenerative process.


Journal of Virology | 2008

CD20, CD3, and CD40 Ligand Microclusters Segregate Three-Dimensionally In Vivo at B-Cell-T-Cell Immunological Synapses after Viral Immunity in Primate Brain

Carlos Barcia; Aurora Gómez; Vicente de Pablos; Emiliano Fernández-Villalba; Chunyan Liu; Kurt M. Kroeger; Javier Martín; Andrés Fernández Barreiro; Maria G. Castro; Pedro R. Lowenstein; Maria Trinidad Herrero

ABSTRACT The clearance of virally infected cells from the brain is mediated by T cells that engage antigen-presenting cells to form supramolecular activation clusters at the immunological synapse. However, after clearance, the T cells persist at the infection site and remain activated locally. In the present work the long-term interactions of immune cells in brains of monkeys were imaged in situ 9 months after the viral inoculation. After viral immunity, the persistent infiltration of T cells and B cells was observed at the infection sites. T cells showed evidence of T-cell receptor signaling as a result of contacts with B cells. Three-dimensional analysis of B-cell-T-cell synapses showed clusters of CD3 in T cells and the segregation of CD20 in B cells, involving the recruitment of CD40 ligand at the interface. These results demonstrate that immunological synapses between B cells and T cells forming three-dimensional microclusters occur in vivo in the central nervous system and suggest that these interactions may be involved in the lymphocyte activation after viral immunity at the original infection site.


Journal of Neural Transmission-supplement | 2009

Inflammatory response in Parkinsonism.

Carlos Barcia; Francisco J. Ros; María Angeles Carrillo; David Aguado-Llera; Carmen María Brugarolas Ros; Aurora Gómez; Cristina Nombela; Vicente de Pablos; Emiliano Fernández-Villalba; María-Trinidad Herrero

Inflammatory responses have been proposed as important factors in dopaminergic neuro-degeneration in Parkinsonism. Increasing evidence suggests that the alteration of the glial microenvironment induced by neuronal degeneration could be deleterious to the remaining neurons. The activation of microglia/macrophages and reactive astrocytes may have a negative effect on the surrounding parenchyma, perpetuating the neurodegenerative process. However, this alteration may also go beyond the brain parenchyma and stimulate other inflammatory changes in other systems, inducing the release of proinflammatory cytokines and probably Acute Phase Proteins (APP) and Glucocorticoids (GC). In this work we review the latest advances in the field to provide a picture of the state of the art of studies of inflammatory responses and Parkinsonism, hopefully opening up new therapeutic perspectives for patients with Parkinsons disease.


Neuroscience | 2013

Critical evaluation of the anatomical location of the Barrington nucleus: Relevance for deep brain stimulation surgery of pedunculopontine tegmental nucleus

Lisette Blanco; Jose Enrique Yuste; María Angeles Carrillo-de Sauvage; Aurora Gómez; Emiliano Fernández-Villalba; Itciar Avilés-Olmos; Patricia Limousin; Ludvic Zrinzo; Maria Trinidad Herrero

Deep brain stimulation (DBS) has become the standard surgical procedure for advanced Parkinsons disease (PD). Recently, the pedunculopontine tegmental nucleus (PPN) has emerged as a potential target for DBS in patients whose quality of life is compromised by freezing of gait and falls. To date, only a few groups have published their long-term clinical experience with PPN stimulation. Bearing in mind that the Barrington (Bar) nucleus and some adjacent nuclei (also known as the micturition centre) are close to the PPN and may be affected by DBS, the aim of the present study was to review the anatomical location of this structure in human and other species. To this end, the Bar nucleus area was analysed in mouse, monkey and human tissues, paying particular attention to the anatomical position in humans, where it has been largely overlooked. Results confirm that anatomical location renders the Bar nucleus susceptible to influence by the PPN DBS lead or to diffusion of electrical current. This may have an undesirable impact on the quality of life of patients.


Neuroscience Letters | 2009

MPTP administration increases plasma levels of acute phase proteins in non-human primates (Macaca fascicularis)

V. De Pablos; Carlos Barcia; Salvador Martinez; Aurora Gómez; Francisco Ros-Bernal; J. Zamarro-Parra; J.J. Soria-Torrecillas; J. Hernández; J.J. Ceron; María-Trinidad Herrero

Parkinsons disease (PD) is characterized by the loss of dopaminergic neurons in the Substantia Nigra pars compacta (SNpc). Parkinsonian patients and animal models of PD show inflammatory phenomena such as microglial activation and cytokine production that could modulate the progression of the disease, since they play a crucial role in the degenerative process. Since acute phase proteins (APPs) are involved in a number of homeostatic alterations and inflammatory processes, we analyzed the levels of APPs in primates before and after treatment with MPTP. A significant increase in C-reactive protein (CRP), serum amyloid A (SAA) and haptoglobin (HP) levels after MPTP treatment. These results demonstrate that MPTP induces a systemic generalized inflammatory reaction after specific dopaminergic neurotoxicity insult, suggesting that the inflammatory process in Parkinsonism may affect other immune-inflammatory responses outside the brain.

Collaboration


Dive into the Aurora Gómez's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jose Yuste

Instituto de Salud Carlos III

View shared research outputs
Researchain Logo
Decentralizing Knowledge