Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Aurora M. Nedelcu is active.

Publication


Featured researches published by Aurora M. Nedelcu.


Science | 2010

Genomic Analysis of Organismal Complexity in the Multicellular Green Alga Volvox carteri

Simon Prochnik; James G. Umen; Aurora M. Nedelcu; Armin Hallmann; Stephen M. Miller; Ichiro Nishii; Patrick J. Ferris; Alan Kuo; Therese Mitros; Lillian K. Fritz-Laylin; Uffe Hellsten; Jarrod Chapman; Oleg Simakov; Stefan A. Rensing; Astrid Terry; Jasmyn Pangilinan; Vladimir V. Kapitonov; Jerzy Jurka; Asaf Salamov; Harris Shapiro; Jeremy Schmutz; Jane Grimwood; Erika Lindquist; Susan Lucas; Igor V. Grigoriev; Rüdiger Schmitt; David L. Kirk; Daniel S. Rokhsar

Going Multicellular The volvocine algae include both the unicellular Chlamydomonas and the multicellular Volvox, which diverged from one another 50 to 200 million years ago. Prochnik et al. (p. 223) compared the Volvox genome with that of Chlamydomonas to identify any genomic innovations that might have been associated with the transition to multicellularity. Size changes were observed in several protein families in Volvox, but, overall, the Volvox genome and predicted proteome were highly similar to those of Chlamydomonas. Thus, biological complexity can arise without major changes in genome content or protein domains. Comparison of the Chlamydomonas and Volvox genomes show few differences, despite their divergent life histories. The multicellular green alga Volvox carteri and its morphologically diverse close relatives (the volvocine algae) are well suited for the investigation of the evolution of multicellularity and development. We sequenced the 138–mega–base pair genome of V. carteri and compared its ~14,500 predicted proteins to those of its unicellular relative Chlamydomonas reinhardtii. Despite fundamental differences in organismal complexity and life history, the two species have similar protein-coding potentials and few species-specific protein-coding gene predictions. Volvox is enriched in volvocine-algal–specific proteins, including those associated with an expanded and highly compartmentalized extracellular matrix. Our analysis shows that increases in organismal complexity can be associated with modifications of lineage-specific proteins rather than large-scale invention of protein-coding capacity.


PLOS Biology | 2014

The Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP): Illuminating the Functional Diversity of Eukaryotic Life in the Oceans through Transcriptome Sequencing.

Patrick J. Keeling; Fabien Burki; Heather M. Wilcox; Bassem Allam; Eric E. Allen; Linda A. Amaral-Zettler; E. Virginia Armbrust; John M. Archibald; Arvind K. Bharti; Callum J. Bell; Bank Beszteri; Kay D. Bidle; Lisa Campbell; David A. Caron; Rose Ann Cattolico; Jackie L. Collier; Kathryn J. Coyne; Simon K. Davy; Phillipe Deschamps; Sonya T. Dyhrman; Bente Edvardsen; Ruth D. Gates; Christopher J. Gobler; Spencer J. Greenwood; Stephanie M. Guida; Jennifer L. Jacobi; Kjetill S. Jakobsen; Erick R. James; Bethany D. Jenkins; Uwe John

Current sampling of genomic sequence data from eukaryotes is relatively poor, biased, and inadequate to address important questions about their biology, evolution, and ecology; this Community Page describes a resource of 700 transcriptomes from marine microbial eukaryotes to help understand their role in the worlds oceans.


Evolution | 2011

On the paradigm of altruistic suicide in the unicellular world

Aurora M. Nedelcu; William W. Driscoll; Pierre M. Durand; Matthew D. Herron; Armin Rashidi

Altruistic suicide is best known in the context of programmed cell death (PCD) in multicellular individuals, which is understood as an adaptive process that contributes to the development and functionality of the organism. After the realization that PCD‐like processes can also be induced in single‐celled lineages, the paradigm of altruistic cell death has been extended to include these active cell death processes in unicellular organisms. Here, we critically evaluate the current conceptual framework and the experimental data used to support the notion of altruistic suicide in unicellular lineages, and propose new perspectives. We argue that importing the paradigm of altruistic cell death from multicellular organisms to explain active death in unicellular lineages has the potential to limit the types of questions we ask, thus biasing our understanding of the nature, origin, and maintenance of this trait. We also emphasize the need to distinguish between the benefits and the adaptive role of a trait. Lastly, we provide an alternative framework that allows for the possibility that active death in single‐celled organisms is a maladaptive trait maintained as a byproduct of selection on pro‐survival functions, but that could—under conditions in which kin/group selection can act—be co‐opted into an altruistic trait.


Infection, Genetics and Evolution | 2008

Adaptive value of sex in microbial pathogens

Richard E. Michod; Harris Bernstein; Aurora M. Nedelcu

Explaining the adaptive value of sex is one of the great outstanding problems in biology. The challenge comes from the difficulty in identifying the benefits provided by sex, which must outweigh the substantial costs of sex. Here, we consider the adaptive value of sex in viruses, bacteria and fungi, and particularly the information available on the adaptive role of sex in pathogenic microorganisms. Our general theme is that the varied aspects of sex in pathogens illustrate the varied issues surrounding the evolution of sex generally. These include, the benefits of sex (in the short- and long-term), as well as the costs of sex (both to the host and to the pathogen). For the benefits of sex (that is, its adaptive value), we consider three hypotheses: (i) sex provides for effective and efficient recombinational repair of DNA damages, (ii) sex provides DNA for food, and (iii) sex produces variation and reduces genetic associations among alleles under selection. Although the evolution of sex in microbial pathogens illustrates these general issues, our paper is not a general review of theories for the evolution of sex in all organisms. Rather, we focus on the adaptive value of sex in microbial pathogens and conclude that in terms of short-term benefits, the DNA repair hypothesis has the most support and is the most generally applicable hypothesis in this group. In particular, recombinational repair of DNA damages may substantially benefit pathogens when challenged by the oxidative defenses of the host. However, in the long-term, sex may help get rid of mutations, increase the rate of adaptation of the population, and, in pathogens, may infrequently create new infective strains. An additional general issue about sex illustrated by pathogens is that some of the most interesting consequences of sex are not necessarily the reasons for which sex evolved. For example, antibiotic resistance may be transferred by bacterial sex, but this transfer is probably not the reason sex evolved in bacteria.


Integrative and Comparative Biology | 2003

On the reorganization of fitness during evolutionary transitions in individuality.

Richard E. Michod; Aurora M. Nedelcu

Abstract The basic problem in an evolutionary transition is to understand how a group of individuals becomes a new kind of individual, possessing the property of heritable variation in fitness at the new level of organization. During an evolutionary transition, for example, from single cells to multicellular organisms, the new higher-level evolutionary unit (multicellular organism) gains its emergent properties by virtue of the interactions among lower-level units (cells). We see the formation of cooperative interactions among lower-level units as a necessary step in evolutionary transitions; only cooperation transfers fitness from lower levels (costs to group members) to higher levels (benefits to the group). As cooperation creates new levels of fitness, it creates the opportunity for conflict between levels as deleterious mutants arise and spread within the group. Fundamental to the emergence of a new higher-level unit is the mediation of conflict among lower-level units in favor of the higher-level unit. The acquisition of heritable variation in fitness at the new level, via conflict mediation, requires the reorganization of the basic components of fitness (survival and reproduction) and life-properties (such as immortality and totipotency) as well as the co-option of lower-level processes for new functions at the higher level. The way in which the conflicts associated with the transition in individuality have been mediated, and fitness and general life-traits have been re-organized, can influence the potential for further evolution (i.e., evolvability) of the newly emerged evolutionary individual. We use the volvocalean green algal group as a model-system to understand evolutionary transitions in individuality and to apply and test the theoretical principles presented above. Lastly, we discuss how the different notions of individuality stem from the basic properties of fitness in a multilevel selection context.


Proceedings of the Royal Society of London B: Biological Sciences | 2004

Sex as a response to oxidative stress: a twofold increase in cellular reactive oxygen species activates sex genes.

Aurora M. Nedelcu; Oana Marcu; Richard E. Michod

Organisms are constantly subjected to factors that can alter the cellular redox balance and result in the formation of a series of highly reactive molecules known as reactive oxygen species (ROS). As ROS can be damaging to biological structures, cells evolved a series of mechanisms (e.g. cell–cycle arrest, programmed cell death) to respond to high levels of ROS (i.e. oxidative stress). Recently, we presented evidence that in a facultatively sexual lineage—the multicellular green alga Volvox carteri—sex is an additional response to increased levels of stress, and probably ROS and DNA damage. Here we show that, in V. carteri, (i) sex is triggered by an approximately twofold increase in the level of cellular ROS (induced either by the natural sex–inducing stress, namely heat, or by blocking the mitochondrial electron transport chain with antimycin A), and (ii) ROS are responsible for the activation of sex genes. As most types of stress result in the overproduction of ROS, we believe that our findings will prove to extend to other facultatively sexual lineages, which could be indicative of the ancestral role of sex as an adaptive response to stress and ROS–induced DNA damage.


Proceedings of the Royal Society of London B: Biological Sciences | 2003

Sex as a response to oxidative stress: the effect of antioxidants on sexual induction in a facultatively sexual lineage.

Aurora M. Nedelcu; Richard E. Michod

The evolution of sex is one of the long-standing unsolved problems in biology. Although in many lineages sex is an obligatory part of the life cycle and is associated with reproduction, in prokaryotes and many lower eukaryotes, sex is facultative, occurs in response to stress and often involves the formation of a stress-resistant dormant form. The proximate and ultimate causes of the connection between stress and sex in facultatively sexual lineages are unclear. Because most forms of stress result in the overproduction of cellular reactive oxygen species (ROS), we address the hypothesis that this connection involves ROS and possibly reflects the ancestral role of sex as an adaptive response to the damaging effects of stress-induced ROS (i.e. oxidative stress). Here, we report that two antioxidants inhibit sexual induction in a facultatively sexual species—the multicellular green alga, Volvox carteri. Furthermore, the nature of the sex response and the effect of an iron chelator on sexual induction are consistent with sex being a response to the DNA-damaging effects of ROS. In addition, we present preliminary data to suggest that sex, cell-cycle arrest and apoptosis are alternative responses to increased levels of oxidative stress.


Development Genes and Evolution | 2007

Early diversification and complex evolutionary history of the p53 tumor suppressor gene family

Aurora M. Nedelcu; Christopher Tan

The p53 tumor suppressor plays the leading role in malignancy and in maintaining the genome’s integrity and stability. p53 belongs to a gene family that in vertebrates includes two additional members, p63 and p73. Although similar in sequence, gene structure, and expression potential, the three p53 members differ in domain organization (in addition to the transactivation, DNA-binding, and tetramerization domains, p63 and p73 encode a sterile alpha motif, SAM, domain) and functional roles (with p63 and p73 assuming additional key roles in development). It is interesting to note that outside vertebrates, p53-like sequences have only been found as single genes, of either the p53 or the p63/p73 type (i.e., without or with a SAM domain, respectively). In this paper, we report that the diversification of this family is not restricted to the vertebrate lineage, as both a p53- and a p63/p73-type sequence are present in the unicellular choanoflagellate, Monosiga brevicollis. Furthermore, multiple independent duplication events involving p53-type sequences took place in several other animal lineages (cnidarians, flat worms, insects). These findings argue that selective factors other than those associated with the evolution of vertebrates are also relevant to the diversification of this family. Understanding the selective pressures associated with the multiple independent duplication events that took place in the p53 family and the roles of p53-like proteins outside vertebrates will provide further insight into the evolution of this very important family. In addition, the presence of both a p53 and a p63/73 copy in the unicellular M. brevicollis argues for its suitability as a model system for elucidating the functions of the p53 members and the mechanisms associated with their functional diversification.


Journal of Molecular Evolution | 2009

Comparative Genomics of Phylogenetically Diverse Unicellular Eukaryotes Provide New Insights into the Genetic Basis for the Evolution of the Programmed Cell Death Machinery

Aurora M. Nedelcu

Programmed cell death (PCD) represents a significant component of normal growth and development in multicellular organisms. Recently, PCD-like processes have been reported in single-celled eukaryotes, implying that some components of the PCD machinery existed early in eukaryotic evolution. This study provides a comparative analysis of PCD-related sequences across more than 50 unicellular genera from four eukaryotic supergroups: Unikonts, Excavata, Chromalveolata, and Plantae. A complex set of PCD-related sequences that correspond to domains or proteins associated with all main functional classes—from ligands and receptors to executors of PCD—was found in many unicellular lineages. Several PCD domains and proteins previously thought to be restricted to animals or land plants are also present in unicellular species. Noteworthy, the yeast, Saccharomyces cerevisiae—used as an experimental model system for PCD research, has a rather reduced set of PCD-related sequences relative to other unicellular species. The phylogenetic distribution of the PCD-related sequences identified in unicellular lineages suggests that the genetic basis for the evolution of the complex PCD machinery present in extant multicellular lineages has been established early in the evolution of eukaryotes. The shaping of the PCD machinery in multicellular lineages involved the duplication, co-option, recruitment, and shuffling of domains already present in their unicellular ancestors.


Journal of Evolutionary Biology | 2008

Adaptive eukaryote-to-eukaryote lateral gene transfer: stress-related genes of algal origin in the closest unicellular relatives of animals.

Aurora M. Nedelcu; I. H. Miles; A. M. Fagir; K. Karol

In addition to mutation, gene duplication and recombination, the transfer of genetic material between unrelated species is now regarded as a potentially significant player in the shaping of extant genomes and the evolution and diversification of life. Although this is probably true for prokaryotes, the extent of such genetic exchanges in eukaryotes (especially eukaryote‐to‐eukaryote transfers) is more controversial and the selective advantage and evolutionary impact of such events are less documented. A laterally transferred gene could either be added to the gene complement of the recipient or replace the recipient’s homologue; whereas gene replacements can be either adaptive or stochastic, gene additions are most likely adaptive. Here, we report the finding of four stress‐related genes (two ascorbate peroxidase and two metacaspase genes) of algal origin in the closest unicellular relatives of animals, the choanoflagellates. At least three of these sequences represent additions to the choanoflagellate gene complement, which is consistent with these transfers being adaptive. We suggest that these laterally acquired sequences could have provided the primitive choanoflagellates with additional or more efficient means to cope with stress, especially in relation to adapting to freshwater environments and/or sessile or colonial lifestyles.

Collaboration


Dive into the Aurora M. Nedelcu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adrian Reyes-Prieto

Canadian Institute for Advanced Research

View shared research outputs
Top Co-Authors

Avatar

David Roy Smith

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Erick R. James

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Fabien Burki

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge