Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Austin J. Cooney is active.

Publication


Featured researches published by Austin J. Cooney.


Cell | 2009

Somatic sex reprogramming of adult ovaries to testes by FOXL2 ablation

N. Henriette Uhlenhaut; Susanne Jakob; Katrin Anlag; Tobias Eisenberger; Ryohei Sekido; Jana Kress; Anna Corina Treier; Claudia Klugmann; Christian Klasen; Nadine I. Holter; Dieter Riethmacher; Günther Schütz; Austin J. Cooney; Robin Lovell-Badge; Mathias Treier

In mammals, the transcription factor SRY, encoded by the Y chromosome, is normally responsible for triggering the indifferent gonads to develop as testes rather than ovaries. However, testis differentiation can occur in its absence. Here we demonstrate in the mouse that a single factor, the forkhead transcriptional regulator FOXL2, is required to prevent transdifferentiation of an adult ovary to a testis. Inducible deletion of Foxl2 in adult ovarian follicles leads to immediate upregulation of testis-specific genes including the critical SRY target gene Sox9. Concordantly, reprogramming of granulosa and theca cell lineages into Sertoli-like and Leydig-like cell lineages occurs with testosterone levels comparable to those of normal XY male littermates. Our results show that maintenance of the ovarian phenotype is an active process throughout life. They might also have important medical implications for the understanding and treatment of some disorders of sexual development in children and premature menopause in women.


Science | 2008

Oocyte-Specific Deletion of Pten Causes Premature Activation of the Primordial Follicle Pool

Pradeep Reddy; Lian Liu; Deepak Adhikari; Krishna Jagarlamudi; Singareddy Rajareddy; Yan Shen; Chun Du; Wenli Tang; Tuula Hämäläinen; Stanford L. Peng; Zi Jian Lan; Austin J. Cooney; Ilpo Huhtaniemi; Kui Liu

In the mammalian ovary, progressive activation of primordial follicles from the dormant pool serves as the source of fertilizable ova. Menopause, or the end of female reproductive life, occurs when the primordial follicle pool is exhausted. However, the molecular mechanisms underlying follicle activation are poorly understood. We provide genetic evidence that in mice lacking PTEN (phosphatase and tensin homolog deleted on chromosome 10) in oocytes, a major negative regulator of phosphatidylinositol 3-kinase (PI3K), the entire primordial follicle pool becomes activated. Subsequently, all primordial follicles become depleted in early adulthood, causing premature ovarian failure (POF). Our results show that the mammalian oocyte serves as the headquarters of programming of follicle activation and that the oocyte PTEN-PI3K pathway governs follicle activation through control of initiation of oocyte growth.


Nature Cell Biology | 2008

Nanog and Oct4 associate with unique transcriptional repression complexes in embryonic stem cells

Jiancong Liang; Ma Wan; Yi Zhang; Peili Gu; Huawei Xin; Sung Yun Jung; Jun Qin; Jiemin Wong; Austin J. Cooney; Dan Liu; Zhou Songyang

Nanog and Oct4 are essential transcription factors that regulate self-renewal and pluripotency of ES cells. However, the mechanisms by which Nanog and Oct4 modulate ES cell fate remain unknown. Through characterization of endogenous Nanog and Oct4 protein complexes in mouse ES cells, we found that these transcription factors interact with each other and associate with proteins from multiple repression complexes, including the NuRD, Sin3A and Pml complexes. In addition, Nanog, Oct4 and repressor proteins co-occupy Nanog-target genes in mouse ES cells, suggesting that Nanog and Oct4 together may communicate with distinct repression complexes to control gene transcription. To our surprise, of the various core components in the NuRD complex with which Nanog and Oct4 interact, Mta1 was preferred, whereas Mbd3 and Rbbp7 were either absent or present at sub-stoichiometric levels. We named this unique Hdac1/2- and Mta1/2-containing complex NODE (for Nanog and Oct4 associated deacetylase). Interestingly, NODE contained histone deacetylase (HDAC) activity that seemed to be comparable to NuRD, and retained its association with Nanog and Oct4 in Mbd3−/− ES cells. In contrast to Mbd3 loss-of-function, knockdown of NODE subunits led to increased expression of developmentally regulated genes and ES-cell differentiation. Our data collectively suggest that Nanog and Oct4 associate with unique repressor complexes on their target genes to control ES cell fate.


Molecular and Cellular Biology | 1992

Chicken ovalbumin upstream promoter transcription factor (COUP-TF) dimers bind to different GGTCA response elements, allowing COUP-TF to repress hormonal induction of the vitamin D3, thyroid hormone, and retinoic acid receptors.

Austin J. Cooney; Sophia Y. Tsai; Bert W. O'Malley; Ming-Jer Tsai

Alignment of natural chicken ovalbumin upstream promoter transcription factor (COUP-TF) response elements shows that, in addition to the predominant direct repeat of the GGTCA motif with a 2-bp spacing, there are other functional COUP elements with variations in the GGTCA orientation and spacing. We systematically analyzed the binding of in vitro-synthesized COUP-TFs and showed that COUP-TF is capable of binding to oligonucleotides containing both direct repeats and palindromes and with different spacings of the GGTCA repeats. Subsequently, we analyzed four possible mechanisms proposed to explain how COUP-TF could bind to these spatial variations of the GGTCA repeat. We demonstrated that the functional DNA-binding form of COUP-TF is a dimer which requires two GGTCA half-sites to bind DNA. We demonstrated that the COUP-TF dimer undergoes a remarkable structural adaptation to accommodate binding to these spatial variants of the GGTCA repeats. A functional consequence of the promiscuous DNA binding of COUP-TF is its ability to down-regulate hormonal induction of target gene expression by other members of the steroid-thyroid hormone receptor superfamily such as the vitamin D3, thyroid hormone, and retinoic acid receptors. Our data indicate that COUP-TF may have an important role in hormonal regulation of gene expression by these receptors.


Molecular and Cellular Biology | 2005

Orphan Nuclear Receptor LRH-1 Is Required To Maintain Oct4 Expression at the Epiblast Stage of Embryonic Development

Peili Gu; Bryan Goodwin; Arthur C.-K. Chung; Xueping Xu; David A. Wheeler; Roger R. Price; Cristin M. Galardi; Li Peng; Anne M. Latour; Beverly H. Koller; Jan A. Gossen; Steven A. Kliewer; Austin J. Cooney

ABSTRACT Oct4 plays an essential role in maintaining the inner cell mass and pluripotence of embryonic stem (ES) cells. The expression of Oct4 is regulated by the proximal enhancer and promoter in the epiblast and by the distal enhancer and promoter at all other stages in the pluripotent cell lineage. Here we report that the orphan nuclear receptor LRH-1, which is expressed in undifferentiated ES cells, can bind to SF-1 response elements in the proximal promoter and proximal enhancer of the Oct4 gene and activate Oct4 reporter gene expression. LRH-1 is colocalized with Oct4 in the inner cell mass and the epiblast of embryos at early developmental stages. Disruption of the LRH-1 gene results in loss of Oct4 expression at the epiblast stage and early embryonic death. Using LRH-1 −/− ES cells, we also show that LRH-1 is required to maintain Oct4 expression at early differentiation time points. In vitro and in vivo results show that LRH-1 plays an essential role in the maintenance of Oct4 expression in ES cells at the epiblast stage of embryonic development, thereby maintaining pluripotence at this crucial developmental stage prior to segregation of the primordial germ cell lineage at gastrulation.


Developmental Cell | 2001

Mouse Germline Restriction of Oct4 Expression by Germ Cell Nuclear Factor

Guy Fuhrmann; Arthur C.-K. Chung; Kathy J. Jackson; Geoffrey C. Hummelke; Aria Baniahmad; Julien Sutter; Ian Sylvester; Hans R. Schöler; Austin J. Cooney

The POU-domain transcription factor Oct4 is essential for the maintenance of the mammalian germline. In this study, we show that the germ cell nuclear factor (GCNF), an orphan nuclear receptor, represses Oct4 gene activity by specifically binding within the proximal promoter. GCNF expression inversely correlates with Oct4 expression in differentiating embryonal cells. GCNF overexpression in embryonal cells represses Oct4 gene and transgene activities, and we establish a link to transcriptional corepressors mediating repression by GCNF. In GCNF-deficient mouse embryos, Oct4 expression is no longer restricted to the germ cell lineage after gastrulation. Our studies suggest that GCNF is critical in repressing Oct4 gene activity as pluripotent stem cells differentiate and in confining Oct4 expression to the germline.


Biology of Reproduction | 2004

Differential Oocyte-Specific Expression of Cre Recombinase Activity in GDF-9-iCre, Zp3cre, and Msx2Cre Transgenic Mice

Zi Jian Lan; Xueping Xu; Austin J. Cooney

Abstract Oocyte-specific deletion of ovarian genes using Cre/loxP technology provides an excellent tool to understand their physiological roles during folliculogenesis, oogenesis, and preimplantation embryonic development. We have generated a transgenic mouse line expressing improved Cre recombinase (iCre) driven by the mouse growth differentiation factor-9 (GDF-9) promoter. The resulting transgenic mouse line was named GDF-9-iCre mice. Using the floxed ROSA reporter mice, we found that Cre recombinase was expressed in postnatal ovaries, but not in heart, liver, spleen, kidney, and brain. Within the ovary, the Cre recombinase was exclusively expressed in the oocytes of primordial follicles and follicles at later developmental stages. The expression of iCre of GDF-9-iCre mice was shown to be earlier than the Cre expression of Zp3Cre and Msx2Cre mice, in which the Cre gene is driven by zona pellucida protein 3 (Zp3) promoter and a homeobox gene Msx2 promoter, respectively, in the postnatal ovary. Breeding wild-type males with heterozygous floxed germ cell nuclear factor (GCNF) females carrying the GDF-9-iCre transgene did not produce any progeny having the floxed GCNF allele, indicating that complete deletion of the floxed GCNF allele can be achieved in the female germline by GDF-9-iCre mice. These results suggest that GDF-9-iCre mouse line provides an excellent genetic tool for understanding functions of oocyte-expressing genes involved in folliculogenesis, oogenesis, and early embryonic development. Comparison of the ontogeny of the Cre activities of GDF-9-iCre, Zp3Cre, and Msx2Cre transgenic mice shows there is sequential Cre activity of the three transgenes that will allow inactivation of a target gene at different points in folliculogenesis.


Human Molecular Genetics | 2010

Tsc/mTORC1 signaling in oocytes governs the quiescence and activation of primordial follicles

Deepak Adhikari; Wenjing Zheng; Yan Shen; Nagaraju Gorre; Tuula Hämäläinen; Austin J. Cooney; Ilpo Huhtaniemi; Zi Jian Lan; Kui Liu

To maintain the female reproductive lifespan, the majority of ovarian primordial follicles are preserved in a quiescent state in order to provide ova for later reproductive life. However, the molecular mechanism that maintains the long quiescence of primordial follicles is poorly understood. Here we provide genetic evidence to show that the tumor suppressor tuberous sclerosis complex 1 (Tsc1), which negatively regulates mammalian target of rapamycin complex 1 (mTORC1), functions in oocytes to maintain the quiescence of primordial follicles. In mutant mice lacking the Tsc1 gene in oocytes, the entire pool of primordial follicles is activated prematurely due to elevated mTORC1 activity in the oocyte, ending up with follicular depletion in early adulthood and causing premature ovarian failure (POF). We further show that maintenance of the quiescence of primordial follicles requires synergistic, collaborative functioning of both Tsc and PTEN (phosphatase and tensin homolog deleted on chromosome 10) and that these two molecules suppress follicular activation through distinct ways. Our results suggest that Tsc/mTORC1 signaling and PTEN/PI3K (phosphatidylinositol 3 kinase) signaling synergistically regulate the dormancy and activation of primordial follicles, and together ensure the proper length of female reproductive life. Deregulation of these signaling pathways in oocytes results in pathological conditions of the ovary, including POF and infertility.


Pharmacological Reviews | 2006

International Union of Pharmacology. LXVI. Orphan nuclear receptors.

Gérard Benoit; Austin J. Cooney; Vincent Giguère; Holly A. Ingraham; Mitch Lazar; George E. O. Muscat; Thomas Perlmann; Jean Paul Renaud; John W. R. Schwabe; Frances M. Sladek; Ming-Jer Tsai; Vincent Laudet

Half of the members of the nuclear receptors superfamily are so-called “orphan” receptors because the identity of their ligand, if any, is unknown. Because of their important biological roles, the study of orphan receptors has attracted much attention recently and has resulted in rapid advances that have helped in the discovery of novel signaling pathways. In this review we present the main features of orphan receptors, discuss the structure of their ligand-binding domains and their biological functions. The paradoxical existence of a pharmacology of orphan receptors, a rapidly growing and innovative field, is highlighted.


Molecular and Cellular Biology | 2002

Mice deficient for the wild-type p53-induced phosphatase gene (Wip1) exhibit defects in reproductive organs, immune function, and cell cycle control

Jene Choi; Bonnie Nannenga; Oleg N. Demidov; Dmitry V. Bulavin; Austin J. Cooney; Cory Brayton; Yongxin Zhang; Innocent N. Mbawuike; Allan Bradley; Ettore Appella; Lawrence A. Donehower

ABSTRACT The Wip1 gene is a serine/threonine phosphatase that is induced in a p53-dependent manner by DNA-damaging agents. We show here that Wip1 message is expressed in moderate levels in all organs, but is present at very high levels in the testes, particularly in the postmeiotic round spermatid compartment of the seminiferous tubules. We have confirmed that Wip1 mRNA is induced by ionizing radiation in mouse tissues in a p53-dependent manner. To further determine the normal biological function of Wip1 in mammalian organisms, we have generated Wip1-deficient mice. Wip1 null mice are viable but show a variety of postnatal abnormalities, including variable male runting, male reproductive organ atrophy, reduced male fertility, and reduced male longevity. Mice lacking Wip1 show increased susceptibility to pathogens and diminished T- and B-cell function. Fibroblasts derived from Wip1 null embryos have decreased proliferation rates and appear to be compromised in entering mitosis. The data are consistent with an important role for Wip1 in spermatogenesis, lymphoid cell function, and cell cycle regulation.

Collaboration


Dive into the Austin J. Cooney's collaboration.

Top Co-Authors

Avatar

Xueping Xu

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Peili Gu

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hongran Wang

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Ming-Jer Tsai

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Zi Jian Lan

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Sophia Y. Tsai

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Fernando Larrea

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Bert W. O'Malley

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Kathy J. Jackson

Baylor College of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge