Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Austine Bitek is active.

Publication


Featured researches published by Austine Bitek.


Infection ecology & epidemiology | 2015

A systematic review of Rift Valley Fever epidemiology 1931-2014.

Mark O. Nanyingi; Peninah Munyua; Stephen G. Kiama; Gerald Muchemi; Samuel M. Thumbi; Austine Bitek; Bernard K. Bett; Reese M. Muriithi; M. Kariuki Njenga

Background Rift Valley Fever (RVF) is a mosquito-borne viral zoonosis that was first isolated and characterized in 1931 in Kenya. RVF outbreaks have resulted in significant losses through human illness and deaths, high livestock abortions and deaths. This report provides an overview on epidemiology of RVF including ecology, molecular diversity spatiotemporal analysis, and predictive risk modeling. Methodology Using the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines, we systematically searched for relevant RVF publications in repositories of the World Health Organization Library and Information Networks for Knowledge (WHOLIS), U.S Centers for Disease Control and Prevention (CDC), and Food and Agricultural Organization (FAO). Detailed searches were performed in Google Scholar, SpringerLink, and PubMed databases and included conference proceedings and books published from 1931 up to 31st January 2015. Results and discussion A total of 84 studies were included in this review; majority (50%) reported on common human and animal risk factors that included consumption of animal products, contact with infected animals and residing in low altitude areas associated with favorable climatic and ecological conditions for vector emergence. A total of 14 (16%) of the publications described RVF progressive spatial and temporal distribution and the use of risk modeling for timely prediction of imminent outbreaks. Using distribution maps, we illustrated the gradual spread and geographical extent of disease; we also estimated the disease burden using aggregate human mortalities and cumulative outbreak periods for endemic regions. Conclusion This review outlines common risk factors for RVF infections over wider geographical areas; it also emphasizes the role of spatial models in predicting RVF enzootics. It, therefore, explains RVF epidemiological status that may be used for design of targeted surveillance and control programs in endemic countries.


American Journal of Tropical Medicine and Hygiene | 2015

Strong Association Between Human and Animal Brucella Seropositivity in a Linked Study in Kenya, 2012–2013

Eric Osoro; Peninah Munyua; Sylvia Omulo; Eric Ogola; Fredrick Ade; Peter Mbatha; Murithi Mbabu; Zipporah Ng'ang'a; Salome Kairu; Marybeth Maritim; Samuel M. Thumbi; Austine Bitek; Stella Gaichugi; Carol Rubin; Kariuki Njenga; Marta A. Guerra

Brucellosis is a common bacterial zoonotic infection but data on the prevalence among humans and animals is limited in Kenya. A cross-sectional survey was conducted in three counties practicing different livestock production systems to simultaneously assess the seroprevalence of, and risk factors for brucellosis among humans and their livestock (cattle, sheep, camels, and goats). A two-stage cluster sampling method with random selection of sublocations and households was conducted. Blood samples were collected from humans and animals and tested for Brucella immunoglobulin G (IgG) antibodies. Human and animal individual seroprevalence was 16% and 8%, respectively. Household and herd seroprevalence ranged from 5% to 73% and 6% to 68%, respectively. There was a 6-fold odds of human seropositivity in households with a seropositive animal compared with those without. Risk factors for human seropositivity included regular ingestion of raw milk (adjusted odds ratio [aOR] = 3.5, 95% confidence interval [CI] = 2.8–4.4), exposure to goats (herding, milking, and feeding) (aOR = 3.1, 95% CI = 2.5–3.8), and handling of animal hides (aOR = 1.8, 95% CI = 1.5–2.2). Attaining at least high school education and above was a protective factor for human seropositivity (aOR = 0.3, 95% CI = 0.3–0.4). This linked study provides evidence of a strong association between human and animal seropositivity at the household level.


PLOS ONE | 2016

Prioritization of Zoonotic Diseases in Kenya, 2015

Peninah Munyua; Austine Bitek; Eric Osoro; Emily G. Pieracci; Josephat Muema; Athman Mwatondo; Mathew Kungu; Mark Nanyingi; Radhika Gharpure; Kariuki Njenga; Samuel M. Thumbi

Introduction Zoonotic diseases have varying public health burden and socio-economic impact across time and geographical settings making their prioritization for prevention and control important at the national level. We conducted systematic prioritization of zoonotic diseases and developed a ranked list of these diseases that would guide allocation of resources to enhance their surveillance, prevention, and control. Methods A group of 36 medical, veterinary, and wildlife experts in zoonoses from government, research institutions and universities in Kenya prioritized 36 diseases using a semi-quantitative One Health Zoonotic Disease Prioritization tool developed by Centers for Disease Control and Prevention with slight adaptations. The tool comprises five steps: listing of zoonotic diseases to be prioritized, development of ranking criteria, weighting criteria by pairwise comparison through analytical hierarchical process, scoring each zoonotic disease based on the criteria, and aggregation of scores. Results In order of importance, the participants identified severity of illness in humans, epidemic/pandemic potential in humans, socio-economic burden, prevalence/incidence and availability of interventions (weighted scores assigned to each criteria were 0.23, 0.22, 0.21, 0.17 and 0.17 respectively), as the criteria to define the relative importance of the diseases. The top five priority diseases in descending order of ranking were anthrax, trypanosomiasis, rabies, brucellosis and Rift Valley fever. Conclusion Although less prominently mentioned, neglected zoonotic diseases ranked highly compared to those with epidemic potential suggesting these endemic diseases cause substantial public health burden. The list of priority zoonotic disease is crucial for the targeted allocation of resources and informing disease prevention and control programs for zoonoses in Kenya.


The Pan African medical journal | 2014

Establishing a One Health office in Kenya

Murithi Mbabu; Ian Njeru; Sarah File; Eric Osoro; Stella Kiambi; Austine Bitek; Peter Ithondeka; Salome Kairu-Wanyoike; Shanaaz Sharif; Eric Gogstad; Francis Gakuya; Kaitlin Sandhaus; Peninah Munyua; Joel M. Montgomery; Robert F. Breiman; Carol Rubin; Kariuki Njenga

A One Health (OH) approach that integrates human,animal and environmental approaches to management of zoonotic diseases has gained momentum in the last decadeas part of a strategy to prevent and control emerging infectious diseases. However, there are few examples of howan OH approach can be established in a country. Kenya establishment of an OH office, referred to asthe Zoonotic Disease Unit (ZDU) in 2011. The ZDU bridges theanimal and human health sectors with a senior epidemiologist deployed from each ministry; and agoal of maintaining collaboration at the animal and human health interface towards better prevention and control of zoonoses. The country is adding an ecologist to the ZDU to ensure that environmental risks are adequately addressed in emerging disease control.


The Pan African medical journal | 2017

Prevalence and genetic diversity of rotavirus infection in children with acute gastroenteritis in a hospital setting, Nairobi Kenya in post vaccination era: a cross-sectional study

Mary-Theresa Agutu; Julliette Ongus; Janeth Kombich; Rose Kamenwa; James Nyangao; John Kagira; Adelaide Ayoyi Ogutu; Austine Bitek

Introduction Rotavirus is the leading cause of severe diarrhoea among infants and young children. Each year more than 611 000 children die from rotavirus gastroenteritis, and two million are hospitalized, worldwide. In Kenya, the impact of recent rotavirus vaccinations on morbidities has not been estimated. The study aimed at determining the prevalence and identity of rotavirus strains isolated from rotavirus-associated diarrhoea in vaccinated children presenting with acute gastroenteritis. Methods Two hundred and ninety eight specimen from children presented at Gertrude Childrens’ Hospital from January to June 2012 were tested by EIA (Enzyme-linked Immunosorbent Assay) for rotavirus antigens. Molecular characterization was conducted on rotavirus-positive specimens. Extracted viral RNA was separated by polyacrylamide gel electrophoresis (PAGE) and the specific rotavirus VP4 (P-types) and VP7 (G-types) determined. Results The prevalence rate of rotavirus was 31.5% (94/298). Of the rotavirus dsRNA, 57 (60.1%) gave visible RNA profiles, 38 (40.4%) assigned long electropherotypes while 19 (20.2%) were short electropherotypes. The strains among the vaccinated were G3P [4], G12P [6], G3P [6], G9P [4], G mixed G9/3P [4] and G1/3P [4]. Specifically, the G genotypes were G9/3 (5.3%), G9 (4.3%), G3 (4.3%), G12 (2.1%) and mixed G1/3 (1.1%). The P genotypes detected were P [4] (5.3%) and P [6] (5.3%). Conclusion The present study demonstrates diversity in circulating genotypes with emergence of genotypes G3, G9, G12 and mixed genotypes G9/3 and recommends that vaccines should be formulated with a broad range of strains to include G9 and G12.


American Journal of Tropical Medicine and Hygiene | 2017

No Serologic Evidence of Middle East Respiratory Syndrome Coronavirus Infection Among Camel Farmers Exposed to Highly Seropositive Camel Herds: A Household Linked Study, Kenya, 2013

Erik Lattwein; Victor Max Corman; Marc-Alain Widdowson; M. Kariuki Njenga; Rees Murithi; Eric Osoro; Marcel A. Müller; Samuel M. Thumbi; Peninah Munyua; Christian Drosten; Austine Bitek; Benjamin Meyer

AbstractHigh seroprevalence of Middle East respiratory syndrome coronavirus (MERS-CoV) among camels has been reported in Kenya and other countries in Africa. To date, the only report of MERS-CoV seropositivity among humans in Kenya is of two livestock keepers with no known contact with camels. We assessed whether persons exposed to seropositive camels at household level had serological evidence of infection. In 2013, 760 human and 879 camel sera were collected from 275 and 85 households respectively in Marsabit County. Data on human and animal demographics and type of contact with camels were collected. Human and camel sera were tested for anti-MERS-CoV IgG using a commercial enzyme-linked immunosorbent assay (ELISA) test. Human samples were confirmed by plaque reduction neutralization test (PRNT). Logistic regression was used to identify factors associated with seropositivity. The median age of persons sampled was 30 years (range: 5-90) and 50% were males. A quarter (197/760) of the participants reported having had contact with camels defined as milking, feeding, watering, slaughtering, or herding. Of the human sera, 18 (2.4%) were positive on ELISA but negative by PRNT. Of the camel sera, 791 (90%) were positive on ELISA. On univariate analysis, higher prevalence was observed in female and older camels over 4 years of age (P < 0.05). On multivariate analysis, only age remained significantly associated with increased odds of seropositivity. Despite high seroprevalence among camels, there was no serological confirmation of MERS-CoV infection among camel pastoralists in Marsabit County. The high seropositivity suggests that MERS-CoV or other closely related virus continues to circulate in camels and highlights ongoing potential for animal-to-human transmission.


PLOS Neglected Tropical Diseases | 2018

Enhanced surveillance for Rift Valley Fever in livestock during El Niño rains and threat of RVF outbreak, Kenya, 2015-2016

Harry Oyas; Lindsey Holmstrom; Naomi P. Kemunto; Matthew Muturi; Athman Mwatondo; Eric Osoro; Austine Bitek; Bernard K. Bett; Jane W. Githinji; Samuel M. Thumbi; Marc-Alain Widdowson; Peninah Munyua; M. Kariuki Njenga

Background In mid-2015, the United States’ Pandemic Prediction and Forecasting Science and Technical Working Group of the National Science and Technology Council, Food and Agriculture Organization Emergency Prevention Systems, and Kenya Meteorological Department issued an alert predicting a high possibility of El-Niño rainfall and Rift Valley Fever (RVF) epidemic in Eastern Africa. Methodology/Principal findings In response to the alert, the Kenya Directorate of Veterinary Services (KDVS) carried out an enhanced syndromic surveillance system between November 2015 and February 2016, targeting 22 RVF high-risk counties in the country as identified previously through risk mapping. The surveillance collected data on RVF-associated syndromes in cattle, sheep, goats, and camels from >1100 farmers through 66 surveillance officers. During the 14-week surveillance period, the KDVS received 10,958 reports from participating farmers and surveillance officers, of which 362 (3.3%) had at least one syndrome. The reported syndromes included 196 (54.1%) deaths in young livestock, 133 (36.7%) abortions, and 33 (9.1%) hemorrhagic diseases, with most occurring in November and December, the period of heaviest rainfall. Of the 69 herds that met the suspect RVF herd definition (abortion in flooded area), 24 (34.8%) were defined as probable (abortions, mortalities in the young ones, and/or hemorrhagic signs) but none were confirmed. Conclusion/Significance This surveillance activity served as an early warning system that could detect RVF disease in animals before spillover to humans. It was also an excellent pilot for designing and implementing syndromic surveillance in animals in the country, which is now being rolled out using a mobile phone-based data reporting technology as part of the global health security system.


Ecohealth | 2018

Mapping potential amplification and transmission hotspots for MERS-CoV, Kenya

Stephen Gikonyo; T. Kimani; Joseph Matere; Joshua Kimutai; Stella Kiambi; Austine Bitek; K.J.Z. Juma Ngeiywa; Yilma Jobre Makonnen; Astrid Tripodi; Subhash Morzaria; Juan Lubroth; Gabriel Rugalema; Folorunso Oludayo Fasina

Dromedary camels have been implicated consistently as the source of Middle East respiratory syndrome coronavirus (MERS-CoV) human infections and attention to prevent and control it has focused on camels. To understanding the epidemiological role of camels in the transmission of MERS-CoV, we utilized an iterative empirical process in Geographic Information System (GIS) to identify and qualify potential hotspots for maintenance and circulation of MERS-CoV, and produced risk-based surveillance sites in Kenya. Data on camel population and distribution were used to develop camel density map, while camel farming system was defined using multi-factorial criteria including the agro-ecological zones (AEZs), production and marketing practices. Primary and secondary MERS-CoV seroprevalence data from specific sites were analyzed, and location-based prevalence matching with camel densities was conducted. High-risk convergence points (migration zones, trade routes, camel markets, slaughter slabs) were profiled and frequent cross-border camel movement mapped. Results showed that high camel-dense areas and interaction (markets and migration zones) were potential hotspot for transmission and spread. Cross-border contacts occurred with in-migrated herds at hotspot locations. AEZ differential did not influence risk distribution and plausible risk factors for spatial MERS-CoV hotspots were camel densities, previous cases of MERS-CoV, high seroprevalence and points of camel convergences. Although Kenyan camels are predisposed to MERS-CoV, no shedding is documented to date. These potential hotspots, determined using anthropogenic, system and trade characterizations should guide selection of sampling/surveillance sites, high-risk locations, critical areas for interventions and policy development in Kenya, as well as instigate further virological examination of camels.


The Pan African medical journal | 2017

Catalysts for implementation of One Health in Kenya

Athman Mwatondo; Peninah Munyua; Zeinab Gura; Mathew Muturi; Eric Osoro; Mark Obonyo; Austine Bitek; Harry Oyas; Murithi Mbabu; Jackson Kioko; Kariuki Njenga; Sara A. Lowther; Samuel M. Thumbi

The recent Zika outbreak in the Americas, Ebola epidemic in West Africa and the increased frequency and impact of emerging and re-emerging infections of animal origin have increased the calls for greater preparedness in early detection and responses to public health events. One-Health approaches that emphasize collaborations between human health, animal health and environmental health sectors for the prevention, early detection and response to disease outbreaks have been hailed as a key strategy. Here we highlight three main efforts that have progressed the implementation of One Health in Kenya.


The Pan African medical journal | 2017

Cryptosporidium infection in calves and the environment in Asembo, Western Kenya: 2015

Allan Ogendo; Mark Obonyo; Peter Wasswa; Austine Bitek; Amos Mbugua; Samuel M. Thumbi

Introduction Cryptosporidium species, a zoonotic enteric coccidian parasite, is among the leading causes of diarrhea in children. We evaluated the prevalence of Cryptosporidium infections in calves, factors associated with calf infection, environmental contamination of manure by Cryptosporidium and factors that expose humans to zoonotic transmission in Asembo. Methods in a cross-sectional study conducted from January to July 2015, we collected fecal specimens from 350 randomly selected calves aged ≤ 6 months old and 187 manure samples from the same farms. We assessed farmers’ knowledge about Cryptosporidium and collected data on characteristics using structured questionnaires. Modified Ziehl Nielsen staining was used to detect Cryptosporidium oocysts from calves’ stool and manure. The prevalence of infected calves and 95% confidence interval (CI) were calculated. Odds ratios (OR) and 95% (CI) were calculated to identify possible factors associated with Cryptosporidium infection; multivariable logistic regression performed to identify factors independently associated with the presence of Cryptosporidium. Results calves’ fecal Cryptosporidium prevalence was 8.3% (95% CI: 5.7-11.8) and 7.5% (95% CI: 4.2-12.2) in manure. Odds of infection was higher in calves with loose stool compared to those with normal stool (AOR = 6.1, 95% C.I: 2.2-16.9), calves ≤ 2 months old compared to older calves (AOR=12.7, 95% C.I: 4.5-35.8) and calves in poor sanitation compared to calves in good hygienic conditions (AOR = 9.9, 95% C.I: 3.1-30.7). Conclusion presence of Cryptosporidium species in calves and environment and reported human contact with animals increases zoonotic risk. We recommend further studies that determine specific Cryptosporidium species infecting animals and humans which would better estimate risk of disease transmission to humans.

Collaboration


Dive into the Austine Bitek's collaboration.

Top Co-Authors

Avatar

Peninah Munyua

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Samuel M. Thumbi

Washington State University

View shared research outputs
Top Co-Authors

Avatar

Eric Osoro

Washington State University

View shared research outputs
Top Co-Authors

Avatar

Kariuki Njenga

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

M. Kariuki Njenga

Washington State University

View shared research outputs
Top Co-Authors

Avatar

Bernard K. Bett

International Livestock Research Institute

View shared research outputs
Top Co-Authors

Avatar

Carol Rubin

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Marc-Alain Widdowson

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge