Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Autun Purser is active.

Publication


Featured researches published by Autun Purser.


PLOS ONE | 2014

Marine litter distribution and density in European seas, from the shelves to deep basins

Christopher K. Pham; Eva Ramírez-Llodra; Claudia H.S. Alt; Teresa Amaro; Melanie Bergmann; Miquel Canals; Jaime S. Davies; G.C.A. Duineveld; François Galgani; Kerry L. Howell; Veerle A.I. Huvenne; Eduardo Isidro; Daniel O.B. Jones; Galderic Lastras; Telmo Morato; José N. Gomes-Pereira; Autun Purser; Heather Stewart; Xavier Tubau; David Van Rooij; Paul A. Tyler

Anthropogenic litter is present in all marine habitats, from beaches to the most remote points in the oceans. On the seafloor, marine litter, particularly plastic, can accumulate in high densities with deleterious consequences for its inhabitants. Yet, because of the high cost involved with sampling the seafloor, no large-scale assessment of distribution patterns was available to date. Here, we present data on litter distribution and density collected during 588 video and trawl surveys across 32 sites in European waters. We found litter to be present in the deepest areas and at locations as remote from land as the Charlie-Gibbs Fracture Zone across the Mid-Atlantic Ridge. The highest litter density occurs in submarine canyons, whilst the lowest density can be found on continental shelves and on ocean ridges. Plastic was the most prevalent litter item found on the seafloor. Litter from fishing activities (derelict fishing lines and nets) was particularly common on seamounts, banks, mounds and ocean ridges. Our results highlight the extent of the problem and the need for action to prevent increasing accumulation of litter in marine environments.


Marine Pollution Bulletin | 2011

Sedimentation on the cold-water coral Lophelia pertusa: cleaning efficiency from natural sediments and drill cuttings.

Ann I. Larsson; Autun Purser

Anthropogenic threats to cold-water coral reefs are trawling and hydrocarbon drilling, with both activities causing increased levels of suspended particles. The efficiency of Lophelia pertusa in rejecting local sediments and drill cuttings from the coral surface was evaluated and found not to differ between sediment types. Further results showed that the coral efficiently removed deposited material even after repeated exposures, indicating an efficient cleaning mechanism. In an experiment focusing on burial, fine-fraction drill cuttings were deposited on corals over time. Drill cutting covered coral area increased with repeated depositions, with accumulation mainly occurring on and adjacent to regions of the coral skeleton lacking tissue cover. Tissue was smothered and polyp mortality occurred where polyps became wholly covered by material. Burial of coral by drill cuttings to the current threshold level used in environmental risk assessment models by the offshore industry (6.3mm) may result in damage to L. pertusa colonies.


PLOS ONE | 2012

Semi-automated image analysis for the assessment of megafaunal densities at the Arctic deep-sea observatory HAUSGARTEN

Timm Schoening; Melanie Bergmann; Jörg Ontrup; James Taylor; Jennifer Dannheim; Julian Gutt; Autun Purser; Tim Wilhelm Nattkemper

Megafauna play an important role in benthic ecosystem function and are sensitive indicators of environmental change. Non-invasive monitoring of benthic communities can be accomplished by seafloor imaging. However, manual quantification of megafauna in images is labor-intensive and therefore, this organism size class is often neglected in ecosystem studies. Automated image analysis has been proposed as a possible approach to such analysis, but the heterogeneity of megafaunal communities poses a non-trivial challenge for such automated techniques. Here, the potential of a generalized object detection architecture, referred to as iSIS (intelligent Screening of underwater Image Sequences), for the quantification of a heterogenous group of megafauna taxa is investigated. The iSIS system is tuned for a particular image sequence (i.e. a transect) using a small subset of the images, in which megafauna taxa positions were previously marked by an expert. To investigate the potential of iSIS and compare its results with those obtained from human experts, a group of eight different taxa from one camera transect of seafloor images taken at the Arctic deep-sea observatory HAUSGARTEN is used. The results show that inter- and intra-observer agreements of human experts exhibit considerable variation between the species, with a similar degree of variation apparent in the automatically derived results obtained by iSIS. Whilst some taxa (e. g. Bathycrinus stalks, Kolga hyalina, small white sea anemone) were well detected by iSIS (i. e. overall Sensitivity: 87%, overall Positive Predictive Value: 67%), some taxa such as the small sea cucumber Elpidia heckeri remain challenging, for both human observers and iSIS.


Marine Pollution Bulletin | 2013

Tolerance to long-term exposure of suspended benthic sediments and drill cuttings in the cold-water coral Lophelia pertusa

Ann I. Larsson; Dick van Oevelen; Autun Purser; Laurenz Thomsen

The cold-water coral Lophelia pertusa was exposed to suspended particles (<63 μm) for 12 weeks. Skeletal growth was significantly lower under exposure concentrations of ∼25 mg l⁻¹ than ∼5 mg l⁻¹ and there was a trend of lower growth rates when exposed to water-based drill cuttings than to natural benthic sediment. Polyp extension was less in corals exposed to higher material concentrations, which provides a possible explanation for observed skeletal growth differences between particle concentrations. Particle exposure had no significant impact on respiration or proportions of tissue and fatty acids in corals. The volume of additional cleaning mucus released by exposed corals was low and release did not significantly affect coral energy expenditure. Our results indicate that L. pertusa polyps can deal comparatively well with enhanced particle deposition rates and suspended matter concentrations. However, a small pilot experiment indicated that coral larvae might be particularly vulnerable to high particle concentrations.


PLOS ONE | 2012

Multivariate statistical analysis of distribution of deep-water gorgonian corals in relation to seabed topography on the Norwegian margin.

Ruiju Tong; Autun Purser; Vikram Unnithan; Janine Guinan

Investigating the relationship between deep-water coral distribution and seabed topography is important for understanding the terrain habitat selection of these species and for the development of predictive habitat models. In this study, the distribution of the deep-water gorgonians, Paragorgia arborea and Primnoa resedaeformis, in relation to terrain variables at multiple scales of 30 m, 90 m and 170 m were investigated at Røst Reef, Traena Reef and Sotbakken Reef on the Norwegian margin, with Ecological Niche Factor Analysis applied. To date, there have been few published studies investigating this aspect of gorgonian distribution. A similar correlation between the distribution of P. arborea and P. resedaeformis and each particular terrain variable was found at each study site, but the strength of the correlation between each variable and distribution differed by reef. The terrain variables of bathymetric position index (BPI) and curvature at analysis scales of 90 m or 170 m were most strongly linked to the distribution of both species at the three geographically distinct study sites. Both gorgonian species tended to inhabit local topographic highs across all three sites, particularly at Sotbakken Reef and Traena Reef, with both species observed almost exclusively on such topographic highs. The tendency for observed P. arborea to inhabit ridge crests at Røst Reef was much greater than was indicated for P. resedaeformis. This investigation identifies the terrain variables which most closely correlate with distribution of these two gorgonian species, and analyzes their terrain habitat selection; further development of predictive habitat models may be considered essential for effective management of these species.


Marine Pollution Bulletin | 2012

Monitoring strategies for drill cutting discharge in the vicinity of cold-water coral ecosystems

Autun Purser; Laurenz Thomsen

Cold-water coral reefs represent some of the most biodiverse and biomass rich ecosystems in the marine environment. Despite this, ecosystem functioning is still poorly understood and the susceptibility of key species to anthropogenic activities and pollutants is unknown. In European waters, cold-water corals are often found in greatest abundance on the continental margin, often in regions rich in hydrocarbon reserves. In this viewpoint paper we discuss some of the current strategies employed in predicting and minimizing exposure of cold-water coral reef ecosystems on the Norwegian margin to waste materials produced during offshore drilling operations by the oil and gas industry. In the light of recent in situ and experimental research conducted with the key reef species Lophelia pertusa, we present some possible improvements to these strategies which may be utilized by industry and managers to further reduce the likelihood of exposure. We further highlight important outstanding research questions in this field.


PLOS ONE | 2015

A Time Series Study of Lophelia pertusa and Reef Megafauna Responses to Drill Cuttings Exposure on the Norwegian Margin

Autun Purser

As hotspots of local biodiversity in the deep sea, preservation of cold-water coral reef communities is of great importance. In European waters the most extensive reefs are found at depths of 300 – 500 m on the continental margin. In Norwegian waters many of these reefs are located in areas of interest for oil and gas exploration and production. In this study drilling was carried out in the Morvin drill field in proximity to a number of small Lophelia pertusa coral reefs (closest reefs 100 m upstream and 350 m downstream of point of waste drill material release). In a novel monitoring study, ROV video surveys of 9 reefs were conducted prior, during, immediately after and >1 year after drilling operations. Behavior of coral polyps inhabiting reefs exposed to differing concentrations of drill cuttings and drilling fluids (waste drilling material) were compared. Levels of expected exposure to these waste materials were determined for each reef by modelling drill cutting transport following release, using accurate in-situ hydrodynamic data collected during the drilling period and drill cutting discharge data as parameters of a dispersal model. The presence / absence of associate reef species (Acesta excavata, Paragorgia arborea and Primnoa resedaeformis) were also determined from each survey video. There were no significant differences in Lophelia pertusa polyp behavior in corals modelled to have been exposed to pulses of >25 ppm drill cutting material and those modelled to be exposed to negligible concentrations of material. From the video data collected, there were no observed degradations of reef structure over time, nor reductions of associate fauna abundance, regardless of modelled exposure concentration at any of the surveyed reefs. This study focused exclusively on adult fauna, and did not assess the potential hazard posed by waste drilling material to coral or other larvae. Video data was collected by various ROV’s, using different camera and lighting setups throughout the survey campaign, making comparison of observations prior, during and post drilling problematic. A standardization of video monitoring in future monitoring campaigns is recommended.


Marine Pollution Bulletin | 2013

Resistance of Lophelia pertusa to coverage by sediment and petroleum drill cuttings

Elke Allers; Raeid M. M. Abed; Laura Mariana Wehrmann; Tao Wang; Ann I. Larsson; Autun Purser; Dirk de Beer

In laboratory experiments, the cold-water coral Lophelia pertusa was exposed to settling particles. The effects of reef sediment, petroleum drill cuttings and a mix of both, on the development of anoxia at the coral surface were studied using O2, pH and H2S microsensors and by assessing coral polyp mortality. Due to the branching morphology of L. pertusa and the release of coral mucus, accumulation rates of settling material on coral branches were low. Microsensors detected H2S production in only a few samples, and sulfate reduction rates of natural reef sediment slurries were low (<0.3 nmol S cm(-3) d(-1)). While the exposure to sediment clearly reduced the corals accessibility to oxygen, L. pertusa tolerated both partial low-oxygen and anoxic conditions without any visible detrimental short-term effect, such as tissue damage or death. However, complete burial of coral branches for >24 h in reef sediment resulted in suffocation.


Marine Pollution Bulletin | 2014

Real time observation system for monitoring environmental impact on marine ecosystems from oil drilling operations.

Olav Rune Godø; Jarle Klungsøyr; Sonnich Meier; Eirik Tenningen; Autun Purser; Laurenz Thomsen

Environmental awareness and technological advances has spurred development of new monitoring solutions for the petroleum industry. This paper presents experience from a monitoring program off Norway. To maintain operation within the limits of the government regulations Statoil tested a new monitoring concept. Multisensory data were cabled to surface buoys and transmitted to land via wireless communication. The system collected information about distribution of the drilling wastes and the welfare of the corals in relation to threshold values. The project experienced a series of failures, but the backup monitoring provided information to fulfil the requirements of the permit. The experience demonstrated the need for real time monitoring and how such systems enhance understanding of impacts on marine organisms. Also, drilling operations may improve by taking environmental information into account. The paper proposes to standardize and streamline monitoring protocols to maintain comparability during all phases of the operation and between drill sites.


Scientific Reports | 2017

The Oceanic Biological Pump: Rapid carbon transfer to depth at Continental Margins during Winter

Laurenz Thomsen; Jacopo Aguzzi; Corrado Costa; Fabio C. De Leo; Andrea S. Ogston; Autun Purser

The oceanic biological pump is responsible for the important transfer of CO2-C as POC “Particulate Organic Carbon” to the deep sea. It plays a decisive role in the Earth’s carbon cycle and significant effort is spent to quantify its strength. In this study we used synchronized daily time-series data of surface chlorophyll-a concentrations from the NASA’s MODIS satellite in combination with hourly to daily observations from sea surface buoys and from an Internet Operated Vehicle (IOV) on the seafloor within Barkley Canyon (Northeast Pacific) to investigate the importance of winter processes in the export of fresh phytodetritus. The results indicate that phytoplankton pulses during winter can be as important in POC transfer to depth as the pulses associated with spring and summer blooms. Short winter phytoplankton pulses were observed to disappear from surface waters after low-pressure systems affected the area. Pulses of chlorophyll reached the IOV, at 870 m depth on the canyon seafloor, 12–72 hours later. These observed short pulses of biological carbon production regularly observed in the region from December to March have not been considered a significant component of the biological pump when compared with the denser summer productivity blooms.

Collaboration


Dive into the Autun Purser's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Melanie Bergmann

Alfred Wegener Institute for Polar and Marine Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ann I. Larsson

University of Gothenburg

View shared research outputs
Top Co-Authors

Avatar

Tomas Lundälv

University of Gothenburg

View shared research outputs
Top Co-Authors

Avatar

Jacopo Aguzzi

Spanish National Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge