Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ava J. Udvadia is active.

Publication


Featured researches published by Ava J. Udvadia.


Developmental Biology | 2003

Windows into development: historic, current, and future perspectives on transgenic zebrafish.

Ava J. Udvadia; Elwood Linney

The recent explosion of transgenic zebrafish lines in the literature demonstrates the value of this model system for detailed in vivo analysis of gene regulation and morphogenetic movements. The optical clarity and rapid early development of zebrafish provides the ability to follow these events as they occur in live, developing embryos. This article will review the development of transgenic technology in zebrafish as well as the current and future uses of transgenic zebrafish to explore the dynamic environment of the developing vertebrate embryo.


PLOS Genetics | 2011

Mutations in Zebrafish lrp2 Result in Adult-Onset Ocular Pathogenesis That Models Myopia and Other Risk Factors for Glaucoma

Kerry N. Veth; Jason R. Willer; Ross F. Collery; Matthew P. Gray; Gregory B. Willer; Daniel S. Wagner; Mary C. Mullins; Ava J. Udvadia; Richard S. Smith; Simon W. M. John; Ronald G. Gregg; Brian A. Link

The glaucomas comprise a genetically complex group of retinal neuropathies that typically occur late in life and are characterized by progressive pathology of the optic nerve head and degeneration of retinal ganglion cells. In addition to age and family history, other significant risk factors for glaucoma include elevated intraocular pressure (IOP) and myopia. The complexity of glaucoma has made it difficult to model in animals, but also challenging to identify responsible genes. We have used zebrafish to identify a genetically complex, recessive mutant that shows risk factors for glaucoma including adult onset severe myopia, elevated IOP, and progressive retinal ganglion cell pathology. Positional cloning and analysis of a non-complementing allele indicated that non-sense mutations in low density lipoprotein receptor-related protein 2 (lrp2) underlie the mutant phenotype. Lrp2, previously named Megalin, functions as an endocytic receptor for a wide-variety of bioactive molecules including Sonic hedgehog, Bone morphogenic protein 4, retinol-binding protein, vitamin D-binding protein, and apolipoprotein E, among others. Detailed phenotype analyses indicated that as lrp2 mutant fish age, many individuals—but not all—develop high IOP and severe myopia with obviously enlarged eye globes. This results in retinal stretch and prolonged stress to retinal ganglion cells, which ultimately show signs of pathogenesis. Our studies implicate altered Lrp2-mediated homeostasis as important for myopia and other risk factors for glaucoma in humans and establish a new genetic model for further study of phenotypes associated with this disease.


Physiology & Behavior | 2008

Selenomethionine reduces visual deficits due to developmental methylmercury exposures

Daniel N. Weber; Victoria P. Connaughton; John A. Dellinger; David P. Klemer; Ava J. Udvadia; Michael J. Carvan

Developmental exposures to methylmercury (MeHg) have life-long behavioral effects. Many micronutrients, including selenium, are involved in cellular defenses against oxidative stress and may reduce the severity of MeHg-induced deficits. Zebrafish embryos (<4 h post fertilization, hpf) were exposed to combinations of 0.0-0.30 microM MeHg and/or selenomethionine (SeMet) until 24 hpf then placed in clean medium. Fish were tested as adults under low light conditions ( approximately 60 microW/m(2)) for visual responses to a rotating black bar. Dose-dependent responses to MeHg exposure were evident (ANOVA, P<0.001) as evidenced by reduced responsiveness, whereas SeMet did not induce deficits except at 0.3 microM. Ratios of SeMet:MeHg of 1:1 or 1:3 resulted in responses that were indistinguishable from controls (ANOVA, P<0.001). No gross histopathologies were observed (H&E stain) in the retina or optic tectum at any MeHg concentration. Whole-cell, voltage-gated, depolarization-elicited outward K(+) currents of bipolar cells in intact retina of slices adult zebrafish were recorded and outward K(+) current amplitude was larger in bipolar cells of MeHg-treated fish. This was due to the intense response of cells expressing the delayed rectifying I(K) current; cells expressing the transient I(A) current displayed a slight trend for smaller amplitude among MeHg-treated fish. Developmental co-exposure to SeMet reduced but did not eliminate the increase in the MeHg-induced I(K) response, however, I(A) responses increased significantly over MeHg-treated fish to match control levels. Electrophysiological deficits parallel behavioral patterns in MeHg-treated fish, i.e., initial reactions to the rotating bar were followed by periods of inactivity and then a resumption of responses.


Marine Biotechnology | 2008

Detection of Mercury in Aquatic Environments Using EPRE Reporter Zebrafish

Brandon W. Kusik; Michael J. Carvan; Ava J. Udvadia

It has been proposed that transgenic zebrafish could be designed to detect low levels of chemical contaminants that cause oxidative stress in aquatic environments, such as heavy metals or pesticides. In this paper, we describe such a transgenic zebrafish that produces a luciferase–green fluorescent protein (LUC–GFP) fusion protein under conditions of oxidative stress. The reporter gene expression is under the regulation of the electrophile responsive element (EPRE), which activates gene expression in response to oxidative stressors. The GFP component of this fusion protein allows us to visually detect reporter gene activity in live animals to determine if activity is localized to a particular tissue. The luciferase component is capable of returning a quantitative assessment of reporter gene activity that allows us to determine if reporter gene activity is directly correlated to the concentration of the chemical inducer. We have tested this reporter construct in both transient and stable transgenic fish after exposure to a range of HgCl2 concentrations. GFP expression from the EPRE–LUC–GFP construct was inducible in transient assays but was below the limit of detection in stable lines. In contrast, we observed inducible luciferase activity in both transient assays and stable lines treated with HgCl2. We conclude that the EPRE is capable of driving reporter gene expression in a whole animal assay under conditions of oxidative stress. Furthermore, expression was induced at HgCl2 concentrations that do not result in obvious morphological defects, making this approach useful for the detection of low levels of oxidative contaminants in aquatic environments.


Developmental Dynamics | 2010

Transcriptional regulatory regions of gap43 needed in developing and regenerating retinal ganglion cells

Brandon W. Kusik; Dena R. Hammond; Ava J. Udvadia

Mammals and fish differ in their ability to express axon growth‐associated genes in response to CNS injury, which contributes to the differences in their ability for CNS regeneration. Previously we demonstrated that for the axon growth‐associated gene, gap43, regions of the rat promoter that are sufficient to promote reporter gene expression in the developing zebrafish nervous system are not sufficient to promote expression in regenerating retinal ganglion cells in zebrafish. Recently, we identified a 3.6‐kb gap43 promoter fragment from the pufferfish, Takifugu rubripes (fugu), that can promote reporter gene expression during both development and regeneration. Using promoter deletion analysis, we have found regions of the 3.6‐kb fugu gap43 promoter that are necessary for expression in regenerating, but not developing, retinal ganglion cells. Within the 3.6‐kb promoter, we have identified elements that are highly conserved among fish, as well as elements conserved among fish, mammals, and birds. Developmental Dynamics 239:482–495, 2010.


PLOS ONE | 2015

MASH1/Ascl1a leads to GAP43 expression and axon regeneration in the adult CNS.

Ryan R. Williams; Ishwariya Venkatesh; Damien D. Pearse; Ava J. Udvadia; Mary Bartlett Bunge

Unlike CNS neurons in adult mammals, neurons in fish and embryonic mammals can regenerate their axons after injury. These divergent regenerative responses are in part mediated by the growth-associated expression of select transcription factors. The basic helix-loop-helix (bHLH) transcription factor, MASH1/Ascl1a, is transiently expressed during the development of many neuronal subtypes and regulates the expression of genes that mediate cell fate determination and differentiation. In the adult zebrafish (Danio rerio), Ascl1a is also transiently expressed in retinal ganglion cells (RGCs) that regenerate axons after optic nerve crush. Utilizing transgenic zebrafish with a 3.6 kb GAP43 promoter that drives expression of an enhanced green fluorescent protein (EGFP), we observed that knock-down of Ascl1a expression reduces both regenerative gap43 gene expression and axonal growth after injury compared to controls. In mammals, the development of noradrenergic brainstem neurons requires MASH1 expression. In contrast to zebrafish RGCs, however, MASH1 is not expressed in the mammalian brainstem after spinal cord injury (SCI). Therefore, we utilized adeno-associated viral (AAV) vectors to overexpress MASH1 in four month old rat (Rattus norvegicus) brainstem neurons in an attempt to promote axon regeneration after SCI. We discovered that after complete transection of the thoracic spinal cord and implantation of a Schwann cell bridge, animals that express MASH1 exhibit increased noradrenergic axon regeneration and improvement in hindlimb joint movements compared to controls. Together these data demonstrate that MASH1/Ascl1a is a fundamental regulator of axonal growth across vertebrates and can induce modifications to the intrinsic state of neurons to promote functional regeneration in response to CNS injury.


Gene Expression Patterns | 2008

3.6 kb genomic sequence from Takifugu capable of promoting axon growth-associated gene expression in developing and regenerating zebrafish neurons.

Ava J. Udvadia

Unlike mammals, fish have the capacity for functional adult CNS regeneration, which is due, in part, to their ability to express axon growth-related genes in response to nerve injury. One such axon growth-associated gene is gap43, which is expressed during periods of developmental and regenerative axon growth, but is not expressed in CNS neurons that do not regenerate in adult mammals. We previously demonstrated that cis-regulatory elements of gap43 that are sufficient for developmental expression are not sufficient for regenerative expression in the zebrafish. Here we have identified a 3.6kb genomic sequence from Fugu rubripes that can promote reporter gene expression in the nervous system during both development and regeneration in zebrafish. This compact sequence is advantageous for functional dissection of regions important for axon growth-associated gene expression during development and/or regeneration. In addition, this sequence will also be useful for targeting gene expression to neurons during periods of growth and plasticity.


Developmental Dynamics | 2010

Cabin1 expression suggests roles in neuronal development

Dena R. Hammond; Ava J. Udvadia

Nervous system assembly and function depends on precise regulation of developmental gene expression. Cabin1, an essential gene in developing mice, is enriched in regions of the developing zebrafish central nervous system (CNS). Cabin1 is a repressor of MEF2‐ (myocyte enhancer factor 2) and calcineurin‐mediated transcription in the immune system, but its function in the CNS during development is unknown. We identified Cabin1 from a library of genes enriched in developing neurons and determined the temporal and spatial expression of Cabin1 mRNA during CNS development. We found Cabin1 mRNA expression in the developing brain at times correlated with later aspects of neuronal differentiation. In some regions of the CNS Cabin1 expression overlaps with regions that also express proteins known to interact with Cabin1: MEF2 and/or calcineurin. We suggest that Cabin1 could act as a regulator of MEF2 and calcineurin activity in the developing nervous system, given their roles in neuronal differentiation and synaptic refinement. Developmental Dynamics 239:2443–2451, 2010.


European Journal of Neuroscience | 2014

Activation of α2A-containing nicotinic acetylcholine receptors mediates nicotine-induced motor output in embryonic zebrafish

Evdokia Menelaou; Ava J. Udvadia; Robert L. Tanguay; Kurt R. Svoboda

It is well established that cholinergic signaling has critical roles during central nervous system development. In physiological and behavioral studies, activation of nicotinic acetylcholine receptors (nAChRs) has been implicated in mediating cholinergic signaling. In developing spinal cord, cholinergic transmission is associated with neural circuits responsible for producing locomotor behaviors. In this study, we investigated the expression pattern of the α2A nAChR subunit as previous evidence suggested it could be expressed by spinal neurons. In situ hybridization and immunohistochemistry revealed that the α2A nAChR subunits are expressed in spinal Rohon–Beard (RB) neurons and olfactory sensory neurons in young embryos. To examine the functional role of the α2A nAChR subunit during embryogenesis, we blocked its expression using antisense modified oligonucleotides. Blocking the expression of α2A nAChR subunits had no effect on spontaneous motor activity. However, it did alter the embryonic nicotine‐induced motor output. This reduction in motor activity was not accompanied by defects in neuronal and muscle elements associated with the motor output. Moreover, the anatomy and functionality of RB neurons was normal even in the absence of the α2A nAChR subunit. Thus, we propose that α2A‐containing nAChRs are dispensable for normal RB development. However, in the context of nicotine‐induced motor output, α2A‐containing nAChRs on RB neurons provide the substrate that nicotine acts upon to induce the motor output. These findings also indicate that functional neuronal nAChRs are present within spinal cord at the time when locomotor output in zebrafish first begins to manifest itself.


Zebrafish | 2009

Exploring Differential Gene Expression in Zebrafish to Teach Basic Molecular Biology Skills

Angela Schmoldt; Jennifer Forecki; Dena R. Hammond; Ava J. Udvadia

In an effort to engage students in original research while teaching them basic molecular biology skills, we have designed a course for upper level undergraduate students and beginning graduate students that employs in situ hybridization in whole-mount zebrafish embryos to explore the concept of differential gene regulation. The course was taught in a workshop format during a break between the normal fall and spring semesters, which allowed students to immerse themselves in the concepts and techniques full time over a 13-day period. Overall, the course was successful in exposing students to a variety of techniques in the context of an ongoing research project in our laboratory, which provided beneficial outcomes for students and instructors alike. Here we provide a detailed account of the course organization and preparation, as well as an analysis of learning outcomes achieved by the students.

Collaboration


Dive into the Ava J. Udvadia's collaboration.

Top Co-Authors

Avatar

Dena R. Hammond

University of Wisconsin–Milwaukee

View shared research outputs
Top Co-Authors

Avatar

Jonathan M. Horowitz

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Brandon W. Kusik

University of Wisconsin–Milwaukee

View shared research outputs
Top Co-Authors

Avatar

Angela Schmoldt

University of Wisconsin–Milwaukee

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael J. Carvan

University of Wisconsin–Milwaukee

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brian A. Link

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge