Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ava M. Puccio is active.

Publication


Featured researches published by Ava M. Puccio.


Lancet Neurology | 2011

Very early hypothermia induction in patients with severe brain injury (the National Acute Brain Injury Study: Hypothermia II): a randomised trial

Guy L. Clifton; Alex B. Valadka; David A. Zygun; Christopher S. Coffey; Pamala Drever; Sierra Fourwinds; L Scott Janis; Elizabeth Wilde; Pauline Taylor; Kathy J. Harshman; Adam Conley; Ava M. Puccio; Harvey S. Levin; Stephen R. McCauley; Richard D. Bucholz; Kenneth R. Smith; John H Schmidt; James N. Scott; Howard Yonas; David O. Okonkwo

BACKGROUND The inconsistent effect of hypothermia treatment on severe brain injury in previous trials might be because hypothermia was induced too late after injury. We aimed to assess whether very early induction of hypothermia improves outcome in patients with severe brain injury. METHODS The National Acute Brain Injury Study: Hypothermia II (NABIS: H II) was a randomised, multicentre clinical trial of patients with severe brain injury who were enrolled within 2·5 h of injury at six sites in the USA and Canada. Patients with non-penetrating brain injury who were 16-45 years old and were not responsive to instructions were randomly assigned (1:1) by a random number generator to hypothermia or normothermia. Patients randomly assigned to hypothermia were cooled to 35°C until their trauma assessment was completed. Patients who had none of a second set of exclusion criteria were either cooled to 33°C for 48 h and then gradually rewarmed or treated at normothermia, depending upon their initial treatment assignment. Investigators who assessed the outcome measures were masked to treatment allocation. The primary outcome was the Glasgow outcome scale score at 6 months. Analysis was by modified intention to treat. This trial is registered with ClinicalTrials.gov, NCT00178711. FINDINGS Enrolment occurred from December, 2005, to June, 2009, when the trial was terminated for futility. Follow-up was from June, 2006, to December, 2009. 232 patients were initially randomised a mean of 1·6 h (SD 0·5) after injury: 119 to hypothermia and 113 to normothermia. 97 patients (52 in the hypothermia group and 45 in the normothermia group) did not meet any of the second set of exclusion criteria. The mean time to 35°C for the 52 patients in the hypothermia group was 2·6 h (SD 1·2) and to 33°C was 4·4 h (1·5). Outcome was poor (severe disability, vegetative state, or death) in 31 of 52 patients in the hypothermia group and 25 of 56 in the normothermia group (relative risk [RR] 1·08, 95% CI 0·76-1·53; p=0·67). 12 patients in the hypothermia group died compared with eight in the normothermia group (RR 1·30, 95% CI 0·58-2·52; p=0·52). INTERPRETATION This trial did not confirm the utility of hypothermia as a primary neuroprotective strategy in patients with severe traumatic brain injury.


Journal of Neurotrauma | 2004

Marked gender effect on lipid peroxidation after severe traumatic brain injury in adult patients.

Hülya Bayır; Donald W. Marion; Ava M. Puccio; Stephen R. Wisniewski; Keri L. Janesko; Robert Clark; Patrick M. Kochanek

Striking gender differences have been reported in the pathophysiology and outcome of acute neurological injury. Greater neuroprotection in females versus males may be due, in part, to direct and indirect sex hormone-mediated antioxidant mechanisms. Progesterone administration decreases brain levels of F(2)-isoprostane, a marker of lipid peroxidation, after experimental traumatic brain injury (TBI) in male rats, and estrogen is neuroprotective in experimental neurological injury. In this study, we evaluated the effect of gender on lipid peroxidation, as assessed by cerebrospinal fluid (CSF) levels of F(2)-isoprostane, after severe TBI in humans. Lipid peroxidation was assessed in CSF from 68 adults enrolled in two randomized controlled trials evaluating the effect of therapeutic hypothermia after severe TBI (Glasgow coma scale [GCS] score </= 8). Patients treated with hypothermia (n = 41, 12 females, 29 males) were cooled to 32-33 degrees C (within approximately 6 h) for either 24 or 48 h and then re-warmed. F(2)-isoprostane levels were assessed by ELISA in ventricular CSF samples (n = 199) on day 1, 2, and 3. The association between age, GCS score, time, gender, treatment, duration of treatment, core temperature at the time of CSF sampling, secondary hypoxemia, and CSF F(2)-isoprostane level was assessed by multivariate and dichotomous analyses. F(2)-isoprostane was approximately 2-fold higher in males than females (145.8 +/- 39.6 versus 75.4 +/- 16.6 pg/mL, day 1 p = 0.018). An effect of time after injury (p = 0.007) was reflected by a marked early peak in F(2)-isoprostane (day 1). CSF F(2)-isoprostane was also associated with hypoxemia (p = 0.04). Hypothermia tended to decrease F(2)-isoprostane levels only in males on d1 after TBI. To our knowledge, this is the first study showing gender differences in lipid peroxidation after clinical TBI. Lipid peroxidation occurs early after severe TBI in adults and is more prominent in males vs females. These results established that gender is an important consideration in clinical trial design, particularly in the case of antioxidant strategies.


Nature Neuroscience | 2012

Lipidomics identifies cardiolipin oxidation as a mitochondrial target for redox therapy of brain injury

Jing Ji; Anthony E. Kline; Andrew A. Amoscato; Alejandro K. Samhan-Arias; Louis J. Sparvero; Vladimir A. Tyurin; Yulia Y. Tyurina; Bruno Fink; Mioara D. Manole; Ava M. Puccio; David O. Okonkwo; Jeffrey P. Cheng; Henry Alexander; Robert Clark; Patrick M. Kochanek; Peter Wipf; Valerian E. Kagan; Hülya Bayır

The brain contains a highly diversified complement of molecular species of a mitochondria-specific phospholipid, cardiolipin, which, because of its polyunsaturation, can readily undergo oxygenation. Using global lipidomics analysis in experimental traumatic brain injury (TBI), we found that TBI was accompanied by oxidative consumption of polyunsaturated cardiolipin and the accumulation of more than 150 new oxygenated molecular species of cardiolipin. RNAi-based manipulations of cardiolipin synthase and cardiolipin levels conferred resistance to mechanical stretch, an in vitro model of traumatic neuronal injury, in primary rat cortical neurons. By applying a brain-permeable mitochondria-targeted electron scavenger, we prevented cardiolipin oxidation in the brain, achieved a substantial reduction in neuronal death both in vitro and in vivo, and markedly reduced behavioral deficits and cortical lesion volume. We conclude that cardiolipin oxygenation generates neuronal death signals and that prevention of it by mitochondria-targeted small molecule inhibitors represents a new target for neuro-drug discovery.


Lancet Neurology | 2011

Spreading depolarisations and outcome after traumatic brain injury: a prospective observational study

Jed A. Hartings; M. Ross Bullock; David O. Okonkwo; Lilian S. Murray; Gordon Murray; Martin Fabricius; Andrew I.R. Maas; Johannes Woitzik; Oliver W. Sakowitz; Bruce E. Mathern; Bob Roozenbeek; Hester F. Lingsma; Jens P. Dreier; Ava M. Puccio; Lori Shutter; Clemens Pahl; Anthony J. Strong

BACKGROUND Pathological waves of spreading mass neuronal depolarisation arise repeatedly in injured, but potentially salvageable, grey matter in 50-60% of patients after traumatic brain injury (TBI). We aimed to ascertain whether spreading depolarisations are independently associated with unfavourable neurological outcome. METHODS We did a prospective, observational, multicentre study at seven neurological centres. We enrolled 109 adults who needed neurosurgery for acute TBI. Spreading depolarisations were monitored by electrocorticography during intensive care and were classified as cortical spreading depression (CSD) if they took place in spontaneously active cortex or as isoelectric spreading depolarisation (ISD) if they took place in isoelectric cortex. Investigators who treated patients and assessed outcome were masked to electrocorticographic results. Scores on the extended Glasgow outcome scale at 6 months were fitted to a multivariate model by ordinal regression. Prognostic score (based on variables at admission, as validated by the IMPACT studies) and spreading depolarisation category (none, CSD only, or at least one ISD) were assessed as outcome predictors. FINDINGS Six individuals were excluded because of poor-quality electrocorticography. A total of 1328 spreading depolarisations arose in 58 (56%) patients. In 38 participants, all spreading depolarisations were classified as CSD; 20 patients had at least one ISD. By multivariate analysis, both prognostic score (p=0·0009) and spreading depolarisation category (p=0·0008) were significant predictors of neurological outcome. CSD and ISD were associated with an increased risk of unfavourable outcome (common odds ratios 1·56 [95% CI 0·72-3·37] and 7·58 [2·64-21·8], respectively). Addition of depolarisation category to the regression model increased the proportion of variance in outcome that could be attributed to predictors from 9% to 22%, compared with the prognostic score alone. INTERPRETATION Spreading depolarisations were associated with unfavourable outcome, after controlling for conventional prognostic variables. The possibility that spreading depolarisations have adverse effects on the traumatically injured brain, and therefore might be a target in the treatment of TBI, deserves further research. FUNDING US Army CDMRP PH/TBI research programme.


Brain | 2011

Spreading depolarizations have prolonged direct current shifts and are associated with poor outcome in brain trauma

Jed A. Hartings; Tomas Watanabe; M. Ross Bullock; David O. Okonkwo; Martin Fabricius; Johannes Woitzik; Jens P. Dreier; Ava M. Puccio; Lori Shutter; Clemens Pahl; Anthony J. Strong

Cortical spreading depolarizations occur spontaneously after ischaemic, haemorrhagic and traumatic brain injury. Their effects vary spatially and temporally as graded phenomena, from infarction to complete recovery, and are reflected in the duration of depolarization measured by the negative direct current shift of electrocorticographic recordings. In the focal ischaemic penumbra, peri-infarct depolarizations have prolonged direct current shifts and cause progressive recruitment of the penumbra into the core infarct. In traumatic brain injury, the effects of spreading depolarizations are unknown, although prolonged events have not been observed in animal models. To determine whether detrimental penumbral-type depolarizations occur in human brain trauma, we analysed electrocorticographic recordings obtained by subdural electrode-strip monitoring during intensive care. Of 53 patients studied, 10 exhibited spreading depolarizations in an electrophysiologic penumbra (i.e. isoelectric cortex with no spontaneous activity). All 10 patients (100%) with isoelectric spreading depolarizations had poor outcomes, defined as death, vegetative state, or severe disability at 6 months. In contrast, poor outcomes were observed in 60% of patients (12/20) who had spreading depolarizations with depression of spontaneous activity and only 26% of patients (6/23) who had no depolarizations (χ2, P<0.001). Spontaneous electrocorticographic activity and direct current shifts of depolarizations were further examined in nine patients. Direct current shift durations (n=295) were distributed with a significant positive skew (range 0:51-16:19 min:s), evidencing a normally distributed group of short events and a sub-group of prolonged events. Prolonged direct current shifts were more commonly associated with isoelectric depolarizations (median 2 min 36 s), whereas shorter depolarizations occurred with depression of spontaneous activity (median 2 min 10 s; P<0.001). In the latter group, direct current shift durations correlated with electrocorticographic depression periods, and were longer when preceded by periodic epileptiform discharges than by continuous delta (0.5-4.0 Hz) or higher frequency activity. Prolonged direct current shifts (>3 min) also occurred mainly within temporal clusters of events. Our results show for the first time that spreading depolarizations are associated with worse clinical outcome after traumatic brain injury. Furthermore, based on animal models of brain injury, the prolonged durations of depolarizations raise the possibility that these events may contribute to maturation of cortical lesions. Prolonged depolarizations, measured by negative direct current shifts, were associated with (i) isoelectricity or periodic epileptiform discharges; (ii) prolonged depression of spontaneous activity and (iii) occurrence in temporal clusters. Depolarizations with these characteristics are likely to reflect a worse prognosis.


Journal of Neurotrauma | 2004

Relationships between cerebrospinal fluid markers of excitotoxicity, ischemia, and oxidative damage after severe TBI: The impact of gender, age, and hypothermia

Amy K. Wagner; Hülya Bayır; Dianxu Ren; Ava M. Puccio; Ross Zafonte; Patrick M. Kochanek

Excitotoxicity and ischemia can result in oxidative stress after TBI. Female sex hormones are hypothesized to be neuroprotective after TBI by affecting multiple mechanisms of secondary injury, including oxidative damage, excitotoxicity and ischemia. Ca2+ mediated oxidative stress increases with age, and hypothermia is known to attenuate secondary injury. The purpose of this study was to determine if the relationship between cerebral spinal fluid (CSF) markers of excitotoxicity, ischemia, and oxidative damage are gender and age specific and the role of hypothermia in affecting these relationships. F2-isoprostane, glutamate, and lactate/pyruvate, were assessed in CSF from adults (n = 68) with severe TBI (Glasgow coma scale [GCS] score </= 8) using ventricular CSF samples (n = 207) collected on days 1, 2, and 3 post-injury. F2-isoprostane/glutamate and F2-isoprostane/lactate/pyruvate ratios were determined for patients at each time point. Six-month Glasgow Outcome Scores (GOS) were also obtained. Repeated measures multivariate analysis showed a significant gender effect (p < 0.002) and gender*time interaction (p = 0.012) on F2-isoprostane/glutamate ratios. A significant gender effect (p = 0.050) and gender*time interaction (p = 0.049) was also seen with F2-isoprostane/lactate/pyruvate. Hypothermia (p = 0.001) and age (p = 0.026) significantly increased F2-isoprostane/glutamate ratios. Females had a significant inverse relationship between day 1 F2-isoprostane/glutamate ratios and GOS scores (r =- 0.43; p = 0.05) as well as day 1 F2-isoprostane/lactate/pyruvate ratio (r =- 0.46; p = 0.04) and GOS scores. These results indicate that females have smaller oxidative damage loads than males for a given excitotoxic or ischemic insult and female gonadal hormones may play a role in mediating this neuroprotective effect. These results also suggest that susceptibility to glutamate mediated oxidative damage increases with age and that hypothermia differentially attenuates CSF glutamate versus F2-isoprostane production. Gender and age differences in TBI pathophysiology should be considered when conducting clinical trials in TBI.


Neurosurgical Focus | 2008

Levetiracetam versus phenytoin for seizure prophylaxis in severe traumatic brain injury

Kristen E. Jones; Ava M. Puccio; Kathy J. Harshman; Bonnie Falcione; Neal Benedict; Brian T. Jankowitz; Martina Stippler; Michael R. Fischer; Erin K. Sauber-Schatz; Anthony Fabio; Joseph M. Darby; David O. Okonkwo

OBJECT Current standard of care for patients with severe traumatic brain injury (TBI) is prophylactic treatment with phenytoin for 7 days to decrease the risk of early posttraumatic seizures. Phenytoin alters drug metabolism, induces fever, and requires therapeutic-level monitoring. Alternatively, levetiracetam (Keppra) does not require serum monitoring or have significant pharmacokinetic interactions. In the current study, the authors compare the EEG findings in patients receiving phenytoin with those receiving levetiracetam monotherapy for seizure prophylaxis following severe TBI. METHODS Data were prospectively collected in 32 cases in which patients received levetiracetam for the first 7 days after severe TBI and compared with data from a historical cohort of 41 cases in which patients received phenytoin monotherapy. Patients underwent 1-hour electroencephalographic (EEG) monitoring if they displayed persistent coma, decreased mental status, or clinical signs of seizures. The EEG results were grouped into normal and abnormal findings, with abnormal EEG findings further categorized as seizure activity or seizure tendency. RESULTS Fifteen of 32 patients in the levetiracetam group warranted EEG monitoring. In 7 of these 15 cases the results were normal and in 8 abnormal; 1 patient had seizure activity, whereas 7 had seizure tendency. Twelve of 41 patients in the phenytoin group received EEG monitoring, with all results being normal. Patients treated with levetiracetam and phenytoin had equivalent incidence of seizure activity (p = 0.556). Patients receiving levetiracetam had a higher incidence of abnormal EEG findings (p = 0.003). CONCLUSIONS Levetiracetam is as effective as phenytoin in preventing early posttraumatic seizures but is associated with an increased seizure tendency on EEG analysis.


Journal of Neurotrauma | 2013

Transforming Research and Clinical Knowledge in Traumatic Brain Injury Pilot: Multicenter Implementation of the Common Data Elements for Traumatic Brain Injury

John K. Yue; Mary J. Vassar; Hester F. Lingsma; Shelly R. Cooper; David O. Okonkwo; Alex B. Valadka; Wayne A. Gordon; Andrew I.R. Maas; Pratik Mukherjee; Esther L. Yuh; Ava M. Puccio; David M. Schnyer; Geoffrey T. Manley; Scott S. Casey; Maxwell Cheong; Kristen Dams-O'Connor; Allison J. Hricik; Emily E. Knight; Edwin S. Kulubya; David K. Menon; Diane Morabito; Jennifer Pacheco; Tuhin Sinha

Traumatic brain injury (TBI) is among the leading causes of death and disability worldwide, with enormous negative social and economic impacts. The heterogeneity of TBI combined with the lack of precise outcome measures have been central to the discouraging results from clinical trials. Current approaches to the characterization of disease severity and outcome have not changed in more than three decades. This prospective multicenter observational pilot study aimed to validate the feasibility of implementing the TBI Common Data Elements (TBI-CDEs). A total of 650 subjects who underwent computed tomography (CT) scans in the emergency department within 24 h of injury were enrolled at three level I trauma centers and one rehabilitation center. The TBI-CDE components collected included: 1) demographic, social and clinical data; 2) biospecimens from blood drawn for genetic and proteomic biomarker analyses; 3) neuroimaging studies at 2 weeks using 3T magnetic resonance imaging (MRI); and 4) outcome assessments at 3 and 6 months. We describe how the infrastructure was established for building data repositories for clinical data, plasma biomarkers, genetics, neuroimaging, and multidimensional outcome measures to create a high quality and accessible information commons for TBI research. Risk factors for poor follow-up, TBI-CDE limitations, and implementation strategies are described. Having demonstrated the feasibility of implementing the TBI-CDEs through successful recruitment and multidimensional data collection, we aim to expand to additional study sites. Furthermore, interested researchers will be provided early access to the Transforming Research and Clinical Knowledge in TBI (TRACK-TBI) data set for collaborative opportunities to more precisely characterize TBI and improve the design of future clinical treatment trials. (ClinicalTrials.gov Identifier NCT01565551.).


Journal of Neurotrauma | 2014

Diffusion Tensor Imaging for Outcome Prediction in Mild Traumatic Brain Injury: A TRACK-TBI Study

Esther L. Yuh; Shelly R. Cooper; Pratik Mukherjee; John K. Yue; Hester F. Lingsma; Wayne A. Gordon; Alex B. Valadka; David O. Okonkwo; David M. Schnyer; Mary J. Vassar; Andrew I.R. Maas; Geoffrey T. Manley; Scott S. Casey; Maxwell Cheong; Kristen Dams-O'Connor; Allison J. Hricik; Tomoo Inoue; David K. Menon; Diane Morabito; Jennifer Pacheco; Ava M. Puccio; Tuhin Sinha

We evaluated 3T diffusion tensor imaging (DTI) for white matter injury in 76 adult mild traumatic brain injury (mTBI) patients at the semiacute stage (11.2±3.3 days), employing both whole-brain voxel-wise and region-of-interest (ROI) approaches. The subgroup of 32 patients with any traumatic intracranial lesion on either day-of-injury computed tomography (CT) or semiacute magnetic resonance imaging (MRI) demonstrated reduced fractional anisotropy (FA) in numerous white matter tracts, compared to 50 control subjects. In contrast, 44 CT/MRI-negative mTBI patients demonstrated no significant difference in any DTI parameter, compared to controls. To determine the clinical relevance of DTI, we evaluated correlations between 3- and 6-month outcome and imaging, demographic/socioeconomic, and clinical predictors. Statistically significant univariable predictors of 3-month Glasgow Outcome Scale-Extended (GOS-E) included MRI evidence for contusion (odds ratio [OR] 4.9 per unit decrease in GOS-E; p=0.01), ≥1 ROI with severely reduced FA (OR, 3.9; p=0.005), neuropsychiatric history (OR, 3.3; p=0.02), age (OR, 1.07/year; p=0.002), and years of education (OR, 0.79/year; p=0.01). Significant predictors of 6-month GOS-E included ≥1 ROI with severely reduced FA (OR, 2.7; p=0.048), neuropsychiatric history (OR, 3.7; p=0.01), and years of education (OR, 0.82/year; p=0.03). For the subset of 37 patients lacking neuropsychiatric and substance abuse history, MRI surpassed all other predictors for both 3- and 6-month outcome prediction. This is the first study to compare DTI in individual mTBI patients to conventional imaging, clinical, and demographic/socioeconomic characteristics for outcome prediction. DTI demonstrated utility in an inclusive group of patients with heterogeneous backgrounds, as well as in a subset of patients without neuropsychiatric or substance abuse history.


Journal of Neurotrauma | 2015

Outcome Prediction after Mild and Complicated Mild Traumatic Brain Injury: External Validation of Existing Models and Identification of New Predictors Using the TRACK-TBI Pilot Study

Hester F. Lingsma; John K. Yue; Andrew I.R. Maas; Ewout W. Steyerberg; Geoffrey T. Manley; Shelly R. Cooper; Kristen Dams-O'Connor; Wayne A. Gordon; David K. Menon; Pratik Mukherjee; David O. Okonkwo; Ava M. Puccio; David M. Schnyer; Alex B. Valadka; Mary J. Vassar; Esther L. Yuh

Although the majority of patients with mild traumatic brain injury (mTBI) recover completely, some still suffer from disabling ailments at 3 or 6 months. We validated existing prognostic models for mTBI and explored predictors of poor outcome after mTBI. We selected patients with mTBI from TRACK-TBI Pilot, an unselected observational cohort of TBI patients from three centers in the United States. We validated two prognostic models for the Glasgow Outcome Scale Extended (GOS-E) at 6 months after injury. One model was based on the CRASH study data and another from Nijmegen, The Netherlands. Possible predictors of 3- and 6-month GOS-E were analyzed with univariate and multi-variable proportional odds regression models. Of the 386 of 485 patients included in the study (median age, 44 years; interquartile range, 27-58), 75% (n=290) presented with a Glasgow Coma Score (GCS) of 15. In this mTBI population, both previously developed models had a poor performance (area under the receiver operating characteristic curve, 0.49-0.56). In multivariable analyses, the strongest predictors of lower 3- and 6-month GOS-E were older age, pre-existing psychiatric conditions, and lower education. Injury caused by assault, extracranial injuries, and lower GCS were also predictive of lower GOS-E. Existing models for mTBI performed unsatisfactorily. Our study shows that, for mTBI, different predictors are relevant as for moderate and severe TBI. These include age, pre-existing psychiatric conditions, and lower education. Development of a valid prediction model for mTBI patients requires further research efforts.

Collaboration


Dive into the Ava M. Puccio's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John K. Yue

University of California

View shared research outputs
Top Co-Authors

Avatar

Lori Shutter

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Alex B. Valadka

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Geoffrey T. Manley

San Francisco General Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hester F. Lingsma

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar

Esther L. Yuh

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge