Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Avi Chaudhuri is active.

Publication


Featured researches published by Avi Chaudhuri.


Molecular Brain Research | 2002

Differential induction and decay curves of c-fos and zif268 revealed through dual activity maps.

Shahin Zangenehpour; Avi Chaudhuri

The use of inducible transcription factors for mapping neural activity is now a common procedure. We have previously developed a double-labelling technique that allows visualization of activated neurons after two different stimulation sequences. The technique exploits the differential time course of mRNA versus protein expression of transcription factors. However, the precise details of the differential time course remained unknown. Here, we provide a complete up- and downregulation profile for both the c-fos and zif268 genes, as determined through combined in situ hybridization and immunocytochemical detection of the mRNA and protein products in primary visual cortex. The data presented here can be used in the design of future studies employing double-label mapping of neural activation following a compound stimulus.


IEEE Transactions on Biomedical Circuits and Systems | 2009

A Mixed-Signal Multichip Neural Recording Interface With Bandwidth Reduction

Benoit Gosselin; Amer E. Ayoub; Jean-François Roy; Mohamad Sawan; Franco Lepore; Avi Chaudhuri; Daniel Guitton

We present a multichip structure assembled with a medical-grade stainless-steel microelectrode array intended for neural recordings from multiple channels. The design features a mixed-signal integrated circuit (IC) that handles conditioning, digitization, and time-division multiplexing of neural signals, and a digital IC that provides control, bandwidth reduction, and data communications for telemetry toward a remote host. Bandwidth reduction is achieved through action potential detection and complete capture of waveforms by means of onchip data buffering. The adopted architecture uses high parallelism and low-power building blocks for safety and long-term implantability. Both ICs are fabricated in a CMOS 0.18-mum process and are subsequently mounted on the base of the microelectrode array. The chips are stacked according to a vertical integration approach for better compactness. The presented device integrates 16 channels, and is scalable to hundreds of recording channels. Its performance was validated on a testbench with synthetic neural signals. The proposed interface presents a power consumption of 138 muW per channel, a size of 2.30 mm2, and achieves a bandwidth reduction factor of up to 48 with typical recordings.


Neurology | 2004

Integrative cortical dysfunction and pervasive motion perception deficit in fragile X syndrome

Cary S. Kogan; A. Bertone; Kim Cornish; Isabelle Boutet; V. M. Der Kaloustian; Eva Andermann; J. Faubert; Avi Chaudhuri

Background: Fragile X syndrome (FXS) is associated with neurologic deficits recently attributed to the magnocellular pathway of the lateral geniculate nucleus. Objective: To test the hypotheses that FXS individuals 1) have a pervasive visual motion perception impairment affecting neocortical circuits in the parietal lobe and 2) have deficits in integrative neocortical mechanisms necessary for perception of complex stimuli. Methods: Psychophysical tests of visual motion and form perception defined by either first-order (luminance) or second-order (texture) attributes were used to probe early and later occipito-temporal and occipito-parietal functioning. Results: When compared to developmental- and age-matched controls, FXS individuals displayed severe impairments in first- and second-order motion perception. This deficit was accompanied by near normal perception for first-order form stimuli but not second-order form stimuli. Conclusions: Impaired visual motion processing for first- and second-order stimuli suggests that both early- and later-level neurologic function of the parietal lobe are affected in Fragile X syndrome (FXS). Furthermore, this deficit likely stems from abnormal input from the magnocellular compartment of the lateral geniculate nucleus. Impaired visual form and motion processing for complex visual stimuli with normal processing for simple (i.e., first-order) form stimuli suggests that FXS individuals have normal early form processing accompanied by a generalized impairment in neurologic mechanisms necessary for integrating all early visual input.


Cognition | 2002

Reassessing the 3/4 view effect in face recognition

Chang Hong Liu; Avi Chaudhuri

It is generally accepted that unfamiliar faces are better recognized if presented in 3/4 view. A common interpretation of this result is that the 3/4 view represents a canonical view for faces. This article presents a critical review of this claim. Two kinds of advantage, in which a 3/4 view either generalizes better to a different view or produces better recognition in the same view, are discussed. Our analysis of the literature shows that the first effect almost invariably depended on different amounts of angular rotation that was present between learning and test views. The advantage usually vanished when angular rotation was equalized between conditions. Reports in favor of the second effect are scant and can be countered by studies reporting negative findings. To clarify this ambiguity, we conducted a recognition experiment. Subjects were trained and tested on the same three views (full-face, 3/4 and profile). The results showed no difference between the three view conditions. Our analysis of the literature, along with the new results, shows that the evidence for a 3/4 view advantage in both categories is weak at best. We suggest that a better predictor of performance for recognition in different views is the angular difference between learning and test views. For recognition in the same view, there may be a wide range of views whose effectiveness is comparable to the 3/4 view.


Visual Neuroscience | 1997

Neuronal responses to edges defined by luminance vs. temporal texture in macaque area V1.

Avi Chaudhuri; Thomas D. Albright

We examined the responsivity, orientation selectivity, and direction selectivity of a sample of neurons in cortical area V1 of the macaque using visual stimuli consisting of drifting oriented contours defined by each of two very different figural cues: luminance contrast and temporal texture. Comparisons of orientation and direction tuning elicited by the different cues were made in order to test the hypothesis that the neuronal representations of these parameters are form-cue invariant. The majority of the sampled cells responded to both stimulus types, although responses to temporal texture stimuli were generally weaker than those elicited by luminance-defined stimuli. Of those units exhibiting orientation selectivity when tested with the luminance-defined stimuli, more than half were also selective for the orientation of the temporal texture stimuli. There was close correspondence between the preferred orientations and tuning bandwidths revealed with the two stimulus types. Of those units exhibiting directional selectivity when tested with the luminance-defined stimuli, about two-thirds were also selective for the direction of the temporal texture stimuli. There was close correspondence between the preferred directions revealed with the two stimulus types, although bidirectional responses were somewhat more common when temporal texture stimuli were used. These results indicate that many V1 neurons encode orientation and direction of motion of retinal image features in a manner that is largely independent of whether the feature is defined by luminance or temporal texture contrast. These neurons may contribute to perceptual phenomena in which figural cue identity is disregarded.


Vision Research | 1999

Lighting direction affects recognition of untextured faces in photographic positive and negative

Chang Hong Liu; Charles A. Collin; A. Mike Burton; Avi Chaudhuri

Face recognition in photographic positive and negative was examined in a same/different matching task in five lighting direction conditions using untextured 3-D laser-scanned faces. The lighting directions were +60, +30, 0, -30 and -60 degrees, where negative values represent bottom lighting and positive values represent top lighting. Recognition performance was better for faces in positive than in negative when lighting directions were at +60 degrees. In one experiment, the same effect was also found at +30 degrees. However, faces in negative were recognized better than positive when the direction was -60 degrees. There was no difference in recognition performance when the lighting direction was 0 and -30 degrees. These results confirm that the effect of lighting direction can be a determinant of the photographic negative effect. Positive faces, which normally appear to be top-lit, may be difficult to recognize in negative partly because of the accompanying change in apparent lighting direction to bottom-lit.


Journal of Experimental Psychology: Human Perception and Performance | 2000

The effects of spatial frequency overlap on face recognition.

Chang Hong Liu; Charles A. Collin; Stéphane Rainville; Avi Chaudhuri

The effects of spatial frequency overlap between pairs of low-pass versus high-pass images on face recognition and matching were examined in 6 experiments. Overlap was defined as the range of spatial frequencies shared by a pair of filtered images. This factor was manipulated by processing image pairs with high-pass/low-pass filter pairs whose 50% cutoff points varied in their separation from one another. The effects of the center frequency of filter pairs were also investigated. In general, performance improved with greater overlap and higher center frequency. In control conditions, the image pairs were processed with identical filters and thus had complete overlap. Even severely filtered low-pass or high-pass images in these conditions produced superior performance. These results suggest that face recognition is more strongly affected by spatial frequency overlap than by the frequency content of the images.


Molecular and Cellular Neuroscience | 1999

Rapid Phosphorylation of Elk-1 Transcription Factor and Activation of MAP Kinase Signal Transduction Pathways in Response to Visual Stimulation

Bozena Kaminska; Leszek Kaczmarek; Shahin Zangenehpour; Avi Chaudhuri

The AP-1 transcription factor, which is composed of various combinations of Fos and Jun proteins, is believed to be a key participant in molecular processes that guide activity-dependent changes in gene expression. In this study, we investigated the activity of different MAP kinases that have been implicated in AP-1 activation. We examined the activities of ERK, JNK/SAPK, and p38 MAPK along with their nuclear targets (Elk-1 and c-Jun) in rat visual cortex after light stimulation. The transcription factor Elk-1 (a possible regulator of c-fos expression) was found to be transiently modified by phosphorylation when visual stimulation was applied after a period of dark rearing. In vitro kinase assay with Elk-1 as substrate showed that light stimulation activated MAPK/ERK in visual cortex but not frontal cortex. Furthermore, ERK activation was temporally matched to onset of Elk-1 phosphorylation. The activity of JNK1 (c-Jun N-terminal kinase 1) was elevated at 2-6 h after visual exposure and was also temporally correlated to increase of endogenous P-c-Jun levels and its appearance within the AP-1 DNA-binding complex. The activities of p38 MAP kinases did not change significantly. These results demonstrate the differential engagement of MAPK signaling pathways following sensory stimulation and their relative effects upon AP-1 expression in the intact brain.


Current Biology | 2005

Patchy Organization and Asymmetric Distribution of the Neural Correlates of Face Processing in Monkey Inferotemporal Cortex

Shahin Zangenehpour; Avi Chaudhuri

BACKGROUND It is believed that a face-specific system exists within the primate ventral visual pathway that is separate from a domain-general nonface object coding system. In addition, it is believed that hemispheric asymmetry, which was long held to be a distinct feature of the human brain, can be found in the brains of other primates as well. We show here for the first time by way of a functional imaging technique that face- and object-selective neurons form spatially distinct clusters at the cellular level in monkey inferotemporal cortex. We have used a novel functional mapping technique that simultaneously generates two separate activity profiles by exploiting the differential time course of zif268 mRNA and protein expression. RESULTS We show that neurons activated by face stimulation can be visualized at cellular resolution and distinguished from those activated by nonface complex objects. Our dual-activity maps of face and object selectivity show that face-selective patches of various sizes (mean, 22.30 mm2; std, 32.76 mm2) exist throughout the IT cortex in the context of a large expanse of cortical territory that is responsive to visual objects. CONCLUSIONS These results add to recent findings that face-selective patches of various sizes exist throughout area IT and provide the first direct anatomical evidence at cellular resolution for a hemispheric asymmetry in favor of the right hemisphere. Together, our results support the notion that human and monkey brains share a similarity in both anatomical organization and distribution of function with respect to high-level visual processing.


Journal of Experimental Psychology: Human Perception and Performance | 2004

Face Recognition Is Affected by Similarity in Spatial Frequency Range to a Greater Degree Than Within-Category Object Recognition.

Charles A. Collin; Chang Hong Liu; Nikolaus F. Troje; Patricia A. McMullen; Avi Chaudhuri

Previous studies have suggested that face identification is more sensitive to variations in spatial frequency content than object recognition, but none have compared how sensitive the 2 processes are to variations in spatial frequency overlap (SFO). The authors tested face and object matching accuracy under varying SFO conditions. Their results showed that object recognition was more robust to SFO variations than face recognition and that the vulnerability of faces was not due to reliance on configural processing. They suggest that variations in sensitivity to SFO help explain the vulnerability of face recognition to changes in image format and the lack of a middle-frequency advantage in object recognition.

Collaboration


Dive into the Avi Chaudhuri's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge