Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Avi Ginsburg is active.

Publication


Featured researches published by Avi Ginsburg.


Journal of the American Chemical Society | 2012

RNA encapsidation by SV40-derived nanoparticles follows a rapid two-state mechanism.

Stanislav Kler; Roi Asor; Chenglei Li; Avi Ginsburg; Daniel Harries; Ariella Oppenheim; Adam Zlotnick; Uri Raviv

Remarkably, uniform virus-like particles self-assemble in a process that appears to follow a rapid kinetic mechanism. The mechanisms by which spherical viruses assemble from hundreds of capsid proteins around nucleic acid, however, are yet unresolved. Using time-resolved small-angle X-ray scattering (TR-SAXS), we have been able to directly visualize SV40 VP1 pentamers encapsidating short RNA molecules (500mers). This assembly process yields T = 1 icosahedral particles comprised of 12 pentamers and one RNA molecule. The reaction is nearly one-third complete within 35 ms, following a two-state kinetic process with no detectable intermediates. Theoretical analysis of kinetics, using a master equation, shows that the assembly process nucleates at the RNA and continues by a cascade of elongation reactions in which one VP1 pentamer is added at a time, with a rate of approximately 10(9) M(-1) s(-1). The reaction is highly robust and faster than the predicted diffusion limit. The emerging molecular mechanism, which appears to be general to viruses that assemble around nucleic acids, implicates long-ranged electrostatic interactions. The model proposes that the growing nucleo-protein complex acts as an electrostatic antenna that attracts other capsid subunits for the encapsidation process.


Langmuir | 2010

Solution X-ray Scattering Form Factors of Supramolecular Self-Assembled Structures

Pablo Szekely; Avi Ginsburg; Tal Ben-Nun; Uri Raviv

In this paper, the analysis of several involved models, relevant for evaluating solution X-ray scattering form factors of supramolecular self-assembled structures, is presented. Different geometrical models are discussed, and the scattering form factors of several layers of those shapes are evaluated. The thickness and the electron density of each layer are parameters in those models. The models include Gaussian electron density profiles and/or uniform electron density profiles at each layer. Various forms of cuboid, layered, spherical, cylindrical, and helical structures are carefully treated. The orientation-averaged scattering intensities of those form factors are calculated. Similar classes of form factors are examined and compared, and their fit to scattering data of lipid bilayers, capsids of the Simian virus 40 virus-like particle and microtubule is discussed. A more detailed model of discrete helices composed of uniform spheres was derived and compared to solution X-ray scattering data of microtubules. Our analyses show that when high-resolution data are available the more detailed models with Gaussian electron density profiles or helical structures composed of spheres should be used to better capture all the elements in the scattering curves. The models presented in this paper may also be applied, with minor corrections, for the analysis of solution neutron scattering data.


Soft Matter | 2011

Following the structural changes during zinc-induced crystallization of charged membranes using time-resolved solution X-ray scattering

Moshe Nadler; Ariel Steiner; Tom Dvir; Or Szekely; Pablo Szekely; Avi Ginsburg; Roi Asor; Roy Resh; Carmen Tamburu; Menahem Peres; Uri Raviv

Zinc ions are highly abundant in biological systems and interact with various enzymes, proteins and biomembranes. In this paper, an in-house state-of-the-art time-resolved solution X-ray scattering setup was used to study the interactions of divalent ions with charged membranes. We show that unlike calcium ions that strongly couple and crystallize charged membranes very rapidly, zinc ions exhibit a fast time scale (seconds) for the strong coupling of the bilayers and a much slower one (hours) for the 2D lateral crystallization of the bilayers. This is attributed to the smaller zinc ion size (compared to calcium ions), which requires higher energy to shed its hydration shells. The rate of crystallization depends on the structure of the lipid tails and is slower for the unsaturated lipid, DOPS, than the saturated lipid, DLPS. We attribute this to the stronger steric repulsion between unsaturated DOPS tails, which have kinks, and to the weaker cohesive electrostatic energy, induced by the zinc ions, due to the larger area per head-group of DOPS. The Avrami model for a 2D growth mechanism with an instantaneous nucleation describes well the crystallization process. The crystallization involves various structural changes in the bilayer structure and lipid conformations within each bilayer. In this paper, we present those structural changes as a function of time.


Journal of Applied Crystallography | 2010

X+: a comprehensive computationally accelerated structure analysis tool for solution X-ray scattering from supramolecular self-assemblies

Tal Ben-Nun; Avi Ginsburg; Pablo Szekely; Uri Raviv

X+ is a user-friendly multi-core accelerated program that fully analyses solution X-ray scattering radially integrated images. This software is particularly useful for analysing supramolecular self-assemblies, often found in biology, and for reconstructing the scattering signal in its entirety. The program enables various ways of subtracting background noise. The user selects a geometric model and defines as many layers of that shape as needed. The thickness and electron density of each layer are the fitting parameters. An initial guess is input by the user and the program calculates the form-factor parameters that best fit the data. The polydispersity of one size parameter at a time can be taken into account. The program can then address the assembly of those shapes into different lattice symmetries. This is accounted for by fitting the parameters of the structure factor, using various peak line shapes. The models of the program and selected features are presented. Among them are the model-fitting procedure, which includes both absolute and relative constraints, data smoothing, signal decomposition for separation of form and structure factors, goodness-of-fit verification procedures, error estimation, and automatic feature recognition in the data, such as correlation peaks and baseline. The programs intuitive graphical user interface runs on Windows PCs. Using X+, the exact structure of a microtubule in a crowded environment, and the structure, domain size, and elastic and interaction parameters of lipid bilayers, were obtained.


Journal of Physical Chemistry B | 2011

Effect of temperature on the structure of charged membranes.

Pablo Szekely; Tom Dvir; Roi Asor; Roi Resh; Ariel Steiner; Or Szekely; Avi Ginsburg; Jonathan Mosenkis; Vicky Guralnick; Yoav Dan; Tamar Wolf; Carmen Tamburu; Uri Raviv

Interactions between charged and neutral self-assembled phospholipid membranes are well understood and take into account temperature dependence. Yet, the manner in which the structure of the membrane is affected by temperature was hardly studied. Here we study the effect of temperature on the thickness, area per lipid, and volume per lipid of charged membranes. Two types of membranes were studied: membranes composed of charged lipids and dipolar (neutral) membranes that adsorbed divalent cations and became charged. Small-angle X-ray scattering data demonstrate that the thickness of charged membranes decreases with temperature. Wide-angle X-ray scattering data show that the area per headgroup increases with temperature. Intrinsically charged membranes linearly thin with temperature, whereas neutral membranes that adsorb divalent ions and become charged show an exponential decrease of their thickness. The data indicate that, on average, the tails shorten as the temperature rises. We attribute this behavior to higher lipid tail entropy and to the weaker electrostatic screening of the charged headgroups, by their counterions, at elevated temperatures. The latter effect leads to stronger electrostatic repulsion between the charged headgroups that increases the area per headgroup and decreases the bilayer thickness.


Nature Materials | 2014

Transformation of taxol-stabilized microtubules into inverted tubulin tubules triggered by a tubulin conformation switch

Miguel A. Ojeda-Lopez; Daniel J. Needleman; Chae Yeon Song; Avi Ginsburg; Phillip Kohl; Youli Li; Herbert P. Miller; Leslie Wilson; Uri Raviv; Myung Chul Choi; Cyrus R. Safinya

Bundles of taxol-stabilized microtubules (MTs) – hollow tubules comprised of assembled αβ-tubulin heterodimers – spontaneously assemble above a critical concentration of tetravalent spermine and are stable over long times at room temperature. Here we report that at concentrations of spermine several-fold higher the MT bundles (BMT) quickly become unstable and undergo a shape transformation to bundles of inverted tubulin tubules (BITT), the outside surface of which corresponds to the inner surface of the BMT tubules. Using transmission electron microscopy and synchrotron small-angle x-ray scattering, we quantitatively determined both the nature of the BMT to BITT transformation pathway, which results from a spermine-triggered conformation switch from straight to curved in the constituent taxol-stabilized tubulin oligomers, and the structure of the BITT phase, which is formed of tubules of helical tubulin oligomers. Inverted tubulin tubules provide a platform for studies requiring exposure and availability of the inside, luminal surface of MTs to MT-targeted-drugs and MT-associated-proteins.


Langmuir | 2012

Entropic Attraction Condenses Like-Charged Interfaces Composed of Self-Assembled Molecules

Ariel Steiner; Pablo Szekely; Or Szekely; Tom Dvir; Roi Asor; Naomi Yuval-Naeh; Nir Keren; Ellina Kesselman; Dganit Danino; Roy Resh; Avi Ginsburg; Vicky Guralnik; Esther Feldblum; Carmen Tamburu; Menachem Peres; Uri Raviv

Like-charged solid interfaces repel and separate from one another as much as possible. Charged interfaces composed of self-assembled charged-molecules such as lipids or proteins are ubiquitous. The present study shows that although charged lipid-membranes are sufficiently rigid, in order to swell as much as possible, they deviate markedly from the behavior of typical like-charged solids when diluted below a critical concentration (ca. 15 wt %). Unexpectedly, they swell into lamellar structures with spacing that is up to four times shorter than the layers should assume (if filling the entire available space). This process is reversible with respect to changing the lipid concentration. Additionally, the research shows that, although the repulsion between charged interfaces increases with temperature, like-charged membranes, remarkably, condense with increasing temperature. This effect is also shown to be reversible. Our findings hold for a wide range of conditions including varying membrane charge density, bending rigidity, salt concentration, and conditions of typical living systems. We attribute the limited swelling and condensation of the net repulsive interfaces to their self-assembled character. Unlike solids, membranes can rearrange to gain an effective entropic attraction, which increases with temperature and compensates for the work required for condensing the bilayers. Our findings provide new insight into the thermodynamics and self-organization of like-charged interfaces composed of self-assembled molecules such as charged biomaterials and supramolecular assemblies that are widely found in synthetic and natural constructs.


Journal of Chemical Information and Modeling | 2016

Reciprocal Grids: A Hierarchical Algorithm for Computing Solution X-ray Scattering Curves from Supramolecular Complexes at High Resolution

Avi Ginsburg; Tal Ben-Nun; Roi Asor; Asaf Shemesh; Israel Ringel; Uri Raviv

In many biochemical processes large biomolecular assemblies play important roles. X-ray scattering is a label-free bulk method that can probe the structure of large self-assembled complexes in solution. As we demonstrate in this paper, solution X-ray scattering can measure complex supramolecular assemblies at high sensitivity and resolution. At high resolution, however, data analysis of larger complexes is computationally demanding. We present an efficient method to compute the scattering curves from complex structures over a wide range of scattering angles. In our computational method, structures are defined as hierarchical trees in which repeating subunits are docked into their assembly symmetries, describing the manner subunits repeat in the structure (in other words, the locations and orientations of the repeating subunits). The amplitude of the assembly is calculated by computing the amplitudes of the basic subunits on 3D reciprocal-space grids, moving up in the hierarchy, calculating the grids of larger structures, and repeating this process for all the leaves and nodes of the tree. For very large structures, we developed a hybrid method that sums grids of smaller subunits in order to avoid numerical artifacts. We developed protocols for obtaining high-resolution solution X-ray scattering data from taxol-free microtubules at a wide range of scattering angles. We then validated our method by adequately modeling these high-resolution data. The higher speed and accuracy of our method, over existing methods, is demonstrated for smaller structures: short microtubule and tobacco mosaic virus. Our algorithm may be integrated into various structure prediction computational tools, simulations, and theoretical models, and provide means for testing their predicted structural model, by calculating the expected X-ray scattering curve and comparing with experimental data.


Biophysical Journal | 2017

Structure and Intermolecular Interactions between L-Type Straight Flagellar Filaments

Daniel Louzon; Avi Ginsburg; Walter Schwenger; Tom Dvir; Zvonimir Dogic; Uri Raviv

Bacterial mobility is powered by rotation of helical flagellar filaments driven by rotary motors. Flagellin isolated from the Salmonella Typhimurium SJW1660 strain, which differs by a point mutation from the wild-type strain, assembles into straight filaments in which flagellin monomers are arranged in a left-handed helix. Using small-angle x-ray scattering and osmotic stress methods, we investigated the structure of SJW1660 flagellar filaments as well as the intermolecular forces that govern their assembly into dense hexagonal bundles. The scattering data were fitted to models, which took into account the atomic structure of the flagellin subunits. The analysis revealed the exact helical arrangement and the super-helical twist of the flagellin subunits within the filaments. Under osmotic stress, the filaments formed two-dimensional hexagonal bundles. Monte Carlo simulations and continuum theories were used to analyze the scattering data from hexagonal arrays, revealing how the bundle bulk modulus and the deflection length of filaments in the bundles depend on the applied osmotic stress. Scattering data from aligned flagellar bundles confirmed the theoretically predicated structure-factor scattering peak line shape. Quantitative analysis of the measured equation of state of the bundles revealed the contributions of electrostatic, hydration, and elastic interactions to the intermolecular forces associated with bundling of straight semi-flexible flagellar filaments.


Biochemistry | 2018

Structure, Assembly, and Disassembly of Tubulin Single Rings

Asaf Shemesh; Avi Ginsburg; Yael Levi-Kalisman; Israel Ringel; Uri Raviv

Single and double tubulin rings were studied under a range of conditions and during microtubule (MT) assembly and disassembly. Here, tubulin was purified from porcine brain and used without any further modifications or additives that promote ring assembly. The structure of single GDP-rich tubulin rings was determined by cryo-transmission electron microscopy and synchrotron solution X-ray scattering. The scattering curves were fitted to atomic models, using our state-of-the-art analysis software, D+ . We found that there is a critical concentration for ring formation, which increased with GTP concentration with temperature. MT assembly or disassembly, induced by changes in temperature, was analyzed by time-resolved small-angle X-ray scattering. During MT assembly, the fraction of rings and unassembled dimers simultaneously decreased. During MT disassembly, the mass fraction of dimers increased. The increase in the concentration of rings was delayed until the fraction of dimers was sufficiently high. We verified that pure dimers, eluted via size-exclusion chromatography, could also form rings. Interestingly, X-ray radiation triggered tubulin ring disassembly. The concentration of disassembled rings versus exposure time followed a first-order kinetics. The disassembly rate constant and initial concentration were determined. X-ray radiation-triggered disassembly was used to determine the concentration of rings. We confirmed that following a temperature jump, the mass fraction of rings decreased and then stabilized at a constant value during the first stage of the MT assembly kinetics. This study sheds light on the most basic assembly and disassembly conditions for in vitro single GDP-rich tubulin rings and their relation to MT kinetics.

Collaboration


Dive into the Avi Ginsburg's collaboration.

Top Co-Authors

Avatar

Uri Raviv

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Roi Asor

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Pablo Szekely

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Tal Ben-Nun

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Tom Dvir

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Ariel Steiner

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Asaf Shemesh

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Carmen Tamburu

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Israel Ringel

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Or Szekely

Weizmann Institute of Science

View shared research outputs
Researchain Logo
Decentralizing Knowledge