Avi Mayo
Weizmann Institute of Science
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Avi Mayo.
Nature | 2011
Alex Sigal; Jocelyn T. Kim; Alejandro B. Balazs; Erez Dekel; Avi Mayo; Ron Milo; David Baltimore
Latency and ongoing replication have both been proposed to explain the drug-insensitive human immunodeficiency virus (HIV) reservoir maintained during antiretroviral therapy. Here we explore a novel mechanism for ongoing HIV replication in the face of antiretroviral drugs. We propose a model whereby multiple infections per cell lead to reduced sensitivity to drugs without requiring drug-resistant mutations, and experimentally validate the model using multiple infections per cell by cell-free HIV in the presence of the drug tenofovir. We then examine the drug sensitivity of cell-to-cell spread of HIV, a mode of HIV transmission that can lead to multiple infection events per target cell. Infections originating from cell-free virus decrease strongly in the presence of antiretrovirals tenofovir and efavirenz whereas infections involving cell-to-cell spread are markedly less sensitive to the drugs. The reduction in sensitivity is sufficient to keep multiple rounds of infection from terminating in the presence of drugs. We examine replication from cell-to-cell spread in the presence of clinical drug concentrations using a stochastic infection model and find that replication is intermittent, without substantial accumulation of mutations. If cell-to-cell spread has the same properties in vivo, it may have adverse consequences for the immune system, lead to therapy failure in individuals with risk factors, and potentially contribute to viral persistence and hence be a barrier to curing HIV infection.
Nature Cell Biology | 2011
Masha Prager-Khoutorsky; Alexandra Lichtenstein; Ramaswamy Krishnan; Kavitha Rajendran; Avi Mayo; Zvi Kam; Benjamin Geiger; Alexander D. Bershadsky
Cell elongation and polarization are basic morphogenetic responses to extracellular matrix adhesion. We demonstrate here that human cultured fibroblasts readily polarize when plated on rigid, but not on compliant, substrates. On rigid surfaces, large and uniformly oriented focal adhesions are formed, whereas cells plated on compliant substrates form numerous small and radially oriented adhesions. Live-cell monitoring showed that focal adhesion alignment precedes the overall elongation of the cell, indicating that focal adhesion orientation may direct cell polarization. siRNA-mediated knockdown of 85 human protein tyrosine kinases (PTKs) induced distinct alterations in the cell polarization response, as well as diverse changes in cell traction force generation and focal adhesion formation. Remarkably, changes in rigidity-dependent traction force development, or focal adhesion mechanosensing, were consistently accompanied by abnormalities in the cell polarization response. We propose that the different stages of cell polarization are regulated by multiple, PTK-dependent molecular checkpoints that jointly control cell contractility and focal-adhesion-mediated mechanosensing.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Oren Shoval; Lea Goentoro; Yuval Hart; Avi Mayo; Eduardo D. Sontag; Uri Alon
Recent studies suggest that certain cellular sensory systems display fold-change detection (FCD): a response whose entire shape, including amplitude and duration, depends only on fold changes in input and not on absolute levels. Thus, a step change in input from, for example, level 1 to 2 gives precisely the same dynamical output as a step from level 2 to 4, because the steps have the same fold change. We ask what the benefit of FCD is and show that FCD is necessary and sufficient for sensory search to be independent of multiplying the input field by a scalar. Thus, the FCD search pattern depends only on the spatial profile of the input and not on its amplitude. Such scalar symmetry occurs in a wide range of sensory inputs, such as source strength multiplying diffusing/convecting chemical fields sensed in chemotaxis, ambient light multiplying the contrast field in vision, and protein concentrations multiplying the output in cellular signaling systems. Furthermore, we show that FCD entails two features found across sensory systems, exact adaptation and Webers law, but that these two features are not sufficient for FCD. Finally, we present a wide class of mechanisms that have FCD, including certain nonlinear feedback and feed-forward loops. We find that bacterial chemotaxis displays feedback within the present class and hence, is expected to show FCD. This can explain experiments in which chemotaxis searches are insensitive to attractant source levels. This study, thus, suggests a connection between properties of biological sensory systems and scalar symmetry stemming from physical properties of their input fields.
eLife | 2015
Laura Pereira; Paschalis Kratsios; Esther Serrano-Saiz; Hila Sheftel; Avi Mayo; David H. Hall; John G. White; Brigitte LeBoeuf; L. Rene Garcia; Uri Alon; Oliver Hobert
Nervous system maps are of critical importance for understanding how nervous systems develop and function. We systematically map here all cholinergic neuron types in the male and hermaphrodite C. elegans nervous system. We find that acetylcholine (ACh) is the most broadly used neurotransmitter and we analyze its usage relative to other neurotransmitters within the context of the entire connectome and within specific network motifs embedded in the connectome. We reveal several dynamic aspects of cholinergic neurotransmitter identity, including a sexually dimorphic glutamatergic to cholinergic neurotransmitter switch in a sex-shared interneuron. An expression pattern analysis of ACh-gated anion channels furthermore suggests that ACh may also operate very broadly as an inhibitory neurotransmitter. As a first application of this comprehensive neurotransmitter map, we identify transcriptional regulatory mechanisms that control cholinergic neurotransmitter identity and cholinergic circuit assembly. DOI: http://dx.doi.org/10.7554/eLife.12432.001
PLOS Computational Biology | 2009
Alon Zaslaver; Shai Kaplan; Anat Bren; Adrian Jinich; Avi Mayo; Erez Dekel; Uri Alon; Shalev Itzkovitz
Cells need to allocate their limited resources to express a wide range of genes. To understand how Escherichia coli partitions its transcriptional resources between its different promoters, we employ a robotic assay using a comprehensive reporter strain library for E. coli to measure promoter activity on a genomic scale at high-temporal resolution and accuracy. This allows continuous tracking of promoter activity as cells change their growth rate from exponential to stationary phase in different media. We find a heavy-tailed distribution of promoter activities, with promoter activities spanning several orders of magnitude. While the shape of the distribution is almost completely independent of the growth conditions, the identity of the promoters expressed at different levels does depend on them. Translation machinery genes, however, keep the same relative expression levels in the distribution across conditions, and their fractional promoter activity tracks growth rate tightly. We present a simple optimization model for resource allocation which suggests that the observed invariant distributions might maximize growth rate. These invariant features of the distribution of promoter activities may suggest design constraints that shape the allocation of transcriptional resources.
PLOS Biology | 2013
Yaron E. Antebi; Shlomit Reich-Zeliger; Yuval Hart; Avi Mayo; Inbal Eizenberg; Jacob Rimer; Prabhakar Putheti; Dana Pe'er; Nir Friedman
An experimental and theoretical study of T cell differentiation in response to mixed-input conditions reveals that cells can tune between Th1 and Th2 states through a continuum of mixed phenotypes.
PLOS ONE | 2009
Ariel Cohen; Tomer Kalisky; Avi Mayo; Naama Geva-Zatorsky; Tamar Danon; Irina Issaeva; Ronen Benjamine Kopito; Natalie Perzov; Ron Milo; Alex Sigal; Uri Alon
A current challenge in biology is to understand the dynamics of protein circuits in living human cells. Can one define and test equations for the dynamics and variability of a protein over time? Here, we address this experimentally and theoretically, by means of accurate time-resolved measurements of endogenously tagged proteins in individual human cells. As a model system, we choose three stable proteins displaying cell-cycle–dependant dynamics. We find that protein accumulation with time per cell is quadratic for proteins with long mRNA life times and approximately linear for a protein with short mRNA lifetime. Both behaviors correspond to a classical model of transcription and translation. A stochastic model, in which genes slowly switch between ON and OFF states, captures measured cell–cell variability. The data suggests, in accordance with the model, that switching to the gene ON state is exponentially distributed and that the cell–cell distribution of protein levels can be approximated by a Gamma distribution throughout the cell cycle. These results suggest that relatively simple models may describe protein dynamics in individual human cells.
PLOS Genetics | 2012
Yitzhak Reizel; Shalev Itzkovitz; Rivka Adar; Judith Elbaz; Adrian Jinich; Noa Chapal-Ilani; Yosef E. Maruvka; Nava Nevo; Zipora Marx; Inna Horovitz; Adam Wasserstrom; Avi Mayo; Irena Shur; Dafna Benayahu; Karl Skorecki; Eran Segal; Nava Dekel; Ehud Shapiro
Fundamental aspects of embryonic and post-natal development, including maintenance of the mammalian female germline, are largely unknown. Here we employ a retrospective, phylogenetic-based method for reconstructing cell lineage trees utilizing somatic mutations accumulated in microsatellites, to study female germline dynamics in mice. Reconstructed cell lineage trees can be used to estimate lineage relationships between different cell types, as well as cell depth (number of cell divisions since the zygote). We show that, in the reconstructed mouse cell lineage trees, oocytes form clusters that are separate from hematopoietic and mesenchymal stem cells, both in young and old mice, indicating that these populations belong to distinct lineages. Furthermore, while cumulus cells sampled from different ovarian follicles are distinctly clustered on the reconstructed trees, oocytes from the left and right ovaries are not, suggesting a mixing of their progenitor pools. We also observed an increase in oocyte depth with mouse age, which can be explained either by depth-guided selection of oocytes for ovulation or by post-natal renewal. Overall, our study sheds light on substantial novel aspects of female germline preservation and development.
Evolution | 2009
Nadav Kashtan; Merav Parter; Erez Dekel; Avi Mayo; Uri Alon
Extinctions of local subpopulations are common events in nature. Here, we ask whether such extinctions can affect the design of biological networks within organisms over evolutionary timescales. We study the impact of extinction events on modularity of biological systems, a common architectural principle found on multiple scales in biology. As a model system, we use networks that evolve toward goals specified as desired input-output relationships. We use an extinction—recolonization model, in which metapopulations occupy and migrate between different localities. Each locality displays a different environmental condition (goal), but shares the same set of subgoals with other localities. We find that in the absence of extinction events, the evolved computational networks are typically highly optimal for their localities with a nonmodular structure. In contrast, when local populations go extinct from time to time, we find that the evolved networks are modular in structure. Modular circuitry is selected because of its ability to adapt rapidly to the conditions of the free niche following an extinction event. This rapid adaptation is mainly achieved through genetic recombination of modules between immigrants from neighboring local populations. This study suggests, therefore, that extinctions in heterogeneous environments promote the evolution of modular biological network structure, allowing local populations to effectively recombine their modules to recolonize niches.
PLOS Computational Biology | 2009
Nadav Kashtan; Avi Mayo; Tomer Kalisky; Uri Alon
Biological systems often display modularity, in the sense that they can be decomposed into nearly independent subsystems. Recent studies have suggested that modular structure can spontaneously emerge if goals (environments) change over time, such that each new goal shares the same set of sub-problems with previous goals. Such modularly varying goals can also dramatically speed up evolution, relative to evolution under a constant goal. These studies were based on simulations of model systems, such as logic circuits and RNA structure, which are generally not easy to treat analytically. We present, here, a simple model for evolution under modularly varying goals that can be solved analytically. This model helps to understand some of the fundamental mechanisms that lead to rapid emergence of modular structure under modularly varying goals. In particular, the model suggests a mechanism for the dramatic speedup in evolution observed under such temporally varying goals.