Avi Mendelsohn
Weizmann Institute of Science
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Avi Mendelsohn.
The Journal of Neuroscience | 2007
Tali Siman-Tov; Avi Mendelsohn; Tom Schonberg; Galia Avidan; Ilana Podlipsky; Luiz Pessoa; Natan Gadoth; Leslie G. Ungerleider; Talma Hendler
Asymmetry of spatial attention has long been described in both disease (hemispatial neglect) and healthy (pseudoneglect) states. Although right-hemisphere specialization for spatial attention has been suggested, the exact neural mechanisms of asymmetry have not been deciphered yet. A recent functional magnetic resonance imaging study from our laboratory serendipitously revealed bihemispheric left-hemifield superiority in activation of a visuospatial attention-related network. Nineteen right-handed healthy adult females participated in two experiments of visual half-field presentation. Either facial expressions (experiment 1) or house images (experiment 2) were presented unilaterally and parafoveally for 150 ms while subjects were engaging a central fixation task. Brain regions previously associated with a visuospatial attention network, in both hemispheres, were found to be more robustly activated by left visual field stimuli. The consistency of this finding with manifestations of attention lateralization is discussed, and a revised model based on neural connectivity asymmetry is proposed. Support for the revised model is given by a dynamic causal modeling analysis. Unraveling the basis for attention asymmetry may lead to better understanding of the pathogenesis of attention disorders, followed by improved diagnosis and treatment. Additionally, the proposed model for asymmetry of visuospatial attention might provide important insights into the mechanisms underlying functional brain lateralization in general.
Neuron | 2008
Avi Mendelsohn; Yossi Chalamish; Alexander Solomonovich; Yadin Dudai
Two groups of participants, one susceptible to posthypnotic amnesia (PHA) and the other not, viewed a movie. A week later, they underwent hypnosis in the fMRI scanner and received a suggestion to forget the movie details after hypnosis until receiving a reversal cue. The participants were tested twice for memory for the movie and for the context in which it was shown, under the posthypnotic suggestion and after its reversal, while their brain was scanned. The PHA group showed reduced memory for movie but not for context while under suggestion. Activity in occipital, temporal, and prefrontal areas differed among the groups, and, in the PHA group, between suggestion and reversal conditions. We propose that whereas some of these regions subserve retrieval of long-term episodic memory, others are involved in inhibiting retrieval, possibly already in a preretrieval monitoring stage. Similar mechanisms may also underlie other forms of functional amnesia.
Learning & Memory | 2012
Orit Furman; Avi Mendelsohn; Yadin Dudai
We took snapshots of human brain activity with fMRI during retrieval of realistic episodic memory over several months. Three groups of participants were scanned during a memory test either hours, weeks, or months after viewing a documentary movie. High recognition accuracy after hours decreased after weeks and remained at similar levels after months. In contrast, BOLD activity in a retrieval-related set of brain areas during correctly remembered events was similar after hours and weeks but significantly declined after months. Despite this reduction, BOLD activity in retrieval-related regions was positively correlated with recognition accuracy only after months. Hippocampal engagement during retrieval remained similar over time during recall but decreased in recognition. Our results are in line with the hypothesis that hippocampus subserves retrieval of real-life episodic memory long after encoding, its engagement being dependent on retrieval demands. Furthermore, our findings suggest that over time episodic engrams are transformed into a parsimonious form capable of supporting accurate retrieval of the crux of events, arguably a critical goal of memory, with only minimal network activation.
Journal of Cognitive Neuroscience | 2009
Tali Siman-Tov; David Papo; Natan Gadoth; Tom Schonberg; Avi Mendelsohn; Daniella Perry; Talma Hendler
Hemispheric lateralization of emotional processing has long been suggested, but its underlying neural mechanisms have not yet been defined. In this functional magnetic resonance imaging study, facial expressions were presented to 10 right-handed healthy adult females in an event-related visual half-field presentation paradigm. Differential activations to fearful versus neutral faces were observed in the amygdala, pulvinar, and superior colliculus only for faces presented in the left hemifield. Interestingly, the left hemifield advantage for fear processing was observed in both hemispheres. These results suggest a leftward bias in subcortical fear processing, consistent with the well-documented leftward bias of danger-associated behaviors in animals. The current finding highlights the importance of hemifield advantage in emotional lateralization, which might reflect the combination of hemispheric dominance and asymmetric interhemispheric information transfer.
Frontiers in Behavioral Neuroscience | 2010
Avi Mendelsohn; Orit Furman; Yadin Dudai
Are specific distributed coactivations in the brain during memory retrieval a signature of retrieval outcome? Here we show that this is indeed the case. Widespread brain networks were reported to be involved in the retrieval of long-term episodic memories. Although functional coactivation among particular regions occurs during episodic memory retrieval, it is unknown to what extent it contributes to the accuracy and confidence of recollection. In this study we set out to explore this question. Participants saw a narrative documentary movie. A week later they underwent an fMRI scan during which they either accepted or rejected factual or fictitious verbal statements concerning the movie. Correct vs. incorrect responses to factual statements were more common and were provided with higher confidence than those made to fictitious statements. Whereas activity in the retrieval network correlated mostly with confidence, coactivations primarily correlated with memory accuracy. Specifically, coactivations of left medial temporal lobe regions with temporal and parietal cortices were greater during correct responses to factual statements, but did not differ between responses to fictitious statements. We propose that network coactivations play a role in recovering memory traces that are relevant to online retrieval cues, culminating in distinct retrieval outcomes.
Presence: Teleoperators & Virtual Environments | 2014
Ori Cohen; Sébastien Druon; Sebastien Lengagne; Avi Mendelsohn; Rafael Malach; Abderrahmane Kheddar; Doron Friedman
We present a robotic embodiment experiment based on real-time functional magnetic resonance imaging (rt-fMRI). In this study, fMRI is used as an input device to identify a subjects intentions and convert them into actions performed by a humanoid robot. The process, based on motor imagery, has allowed four subjects located in Israel to control a HOAP3 humanoid robot in France, in a relatively natural manner, experiencing the whole experiment through the eyes of the robot. Motor imagery or movement of the left hand, the right hand, or the legs were used to control the robotic motions of left, right, or walk forward, respectively.
Learning & Memory | 2009
Avi Mendelsohn; Orit Furman; Inbal Navon; Yadin Dudai
A young woman was filmed during 2 d of her ordinary life. A few months and then again a few years later she was tested for the memory of her experiences in those days while undergoing fMRI scanning. As time passed, she came to accept more false details as true. After months, activity of a network considered to subserve autobiographical memory was correlated with memory confidence rather than with accuracy. After years, mainly regions of the temporal pole displayed this pattern. These results might reflect a slow process of increased reliance on schemata at the expense of accuracy.
Frontiers in Psychology | 2014
Alex Pine; Avi Mendelsohn; Yadin Dudai
Preferences profoundly influence decision-making and are often acquired through experience, yet it is unclear what role conscious awareness plays in the formation and persistence of long-term preferences and to what extent they can be altered by new experiences. We paired visually masked cues with monetary gains or losses during a decision-making task. Despite being unaware of the cues, subjects were influenced by their predictive values over successive trials of the task, and also revealed a strong preference for the appetitive over the aversive cues in supraliminal choices made days after learning. Moreover, the preferences were resistant to an intervening procedure designed to abolish them by a change in reinforcement contingencies, revealing a surprising resilience once formed. Despite their power however, the preferences were abolished when this procedure took place shortly after reactivating the memories, indicating that the underlying affective associations undergo reconsolidation. These findings highlight the importance of initial experiences in the formation of long-lasting preferences even in the absence of consciousness, while suggesting a way to overcome them in spite of their resiliency.
Nature Communications | 2018
Alex Pine; Noa Sadeh; Aya Ben-Yakov; Yadin Dudai; Avi Mendelsohn
Discrepancies between expectations and outcomes, or prediction errors, are central to trial-and-error learning based on reward and punishment, and their neurobiological basis is well characterized. It is not known, however, whether the same principles apply to declarative memory systems, such as those supporting semantic learning. Here, we demonstrate with fMRI that the brain parametrically encodes the degree to which new factual information violates expectations based on prior knowledge and beliefs—most prominently in the ventral striatum, and cortical regions supporting declarative memory encoding. These semantic prediction errors determine the extent to which information is incorporated into long-term memory, such that learning is superior when incoming information counters strong incorrect recollections, thereby eliciting large prediction errors. Paradoxically, by the same account, strong accurate recollections are more amenable to being supplanted by misinformation, engendering false memories. These findings highlight a commonality in brain mechanisms and computational rules that govern declarative and nondeclarative learning, traditionally deemed dissociable.Trial and error learning requires the brain to generate expectations and match them to outcomes, yet whether this occurs for semantic learning is unclear. Here, authors show that the brain encodes the degree to which new factual information violates expectations, which in turn determines whether information is encoded in long-term memory.
eNeuro | 2016
Zhihao Zhang; Avi Mendelsohn; Kirk F. Manson; Daniela Schiller; Ifat Levy
Abstract Decision-making studies have implicated the ventromedial prefrontal cortex (vmPFC) in tracking the value of rewards and punishments. At the same time, fear-learning studies have pointed to a role of the same area in updating previously learned cue–outcome associations. To disentangle these accounts, we used a reward reversal-learning paradigm in a functional magnetic resonance imaging study in 18 human participants. Participants first learned that one of two colored squares (color A) was associated with monetary reward, whereas the other (color B) was not, and then had to learn that these contingencies reversed. Consistent with value representation, activity of a dorsal region of vmPFC was positively correlated with reward magnitude. Conversely, a more ventral region of vmPFC responded more to color A than to color B after contingency reversal, compatible with a role of inhibiting the previously learned response that was no longer appropriate. Moreover, the response strength was correlated with subjects’ behavioral learning strength. Our findings provide direct evidence for the spatial dissociation of value representation and affective response inhibition in the vmPFC.