Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Avinash Gothwal is active.

Publication


Featured researches published by Avinash Gothwal.


Pharmaceutical Research | 2016

Polymeric Micelles: Recent Advancements in the Delivery of Anticancer Drugs

Avinash Gothwal; Iliyas Khan; Umesh Gupta

Nanotechnology, in health and medicine, extensively improves the safety and efficacy of different therapeutic agents, particularly the aspects related to drug delivery and targeting. Among various nano-carriers, polymer based macromolecular approaches have resulted in improved drug delivery for the diseases like cancers, diabetes, autoimmune disorders and many more. Polymeric micelles consisting of hydrophilic exterior and hydrophobic core have established a record of anticancer drug delivery from the laboratory to commercial reality. The nanometric size, tailor made functionality, multiple choices of polymeric micelle synthesis and stability are the unique properties, which have attracted scientists and researchers around the world to work upon in this opportunistic drug carrier. The capability of polymeric micelles as nano-carriers are nowhere less significant than nanoparticles, liposomes and other nanocarriers, as per as the commercial feasibility and presence is concerned. In fact polymeric micelles are among the most extensively studied delivery platforms for the effective treatment of different cancers as well as non-cancerous disorders. The present review highlights the sequential and recent developments in the design, synthesis, characterization and evaluation of polymeric micelles to achieve the effective anticancer drug delivery. The future possibilities and clinical outcome have also been discussed, briefly.


Drug Discovery Today | 2017

Dendrimer nanoarchitectures for cancer diagnosis and anticancer drug delivery

Ashok Sharma; Avinash Gothwal; Prashant Kesharwani; Hashem O. Alsaab; Arun K. Iyer; Umesh Gupta

Dendrimers are novel nanoarchitectures with unique properties including a globular 3D shape, a monodispersed unimicellar nature and a nanometric size range. The availability of multiple peripheral functional groups and tunable surface engineering enable the facile modification of the dendrimer surface with different therapeutic drugs, diagnostic agents and targeting ligands. Drug encapsulation, and solubilizing and passive targeting also equally contribute to the therapeutic use of dendrimers. In this review, we highlight recent advances in the delivery of anticancer drugs using dendrimers, as well as other biomedical and diagnostic applications. Taken together, the immense potential and utility of dendrimers are envisaged to have a significant positive impact on the growing arena of drug delivery and targeting.


Current Pharmaceutical Design | 2015

Dendrimers as an Effective Nanocarrier in Cardiovascular Disease.

Avinash Gothwal; Prashant Kesharwani; Umesh Gupta; Iliyas Khan; Mohd Cairul Iqbal Mohd Amin; Sanjeev Banerjee; Arun K. Iyer

In the last two decades, dendrimers have proven their capabilities in drug delivery, physical stabilization of the drug, solubility enhancement of the poorly soluble drugs and gene delivery. Several key features of dendrimers such as excellent control over molecular structure, nanoscopic size, availability of multiple functional groups at the periphery and narrow polydispersity index distinguish them as a superior choice over available polymers. The diversity of bio-actives loaded in dendrimers due to covalent and non-covalent interactions, such as hydrogen bonding and hydrophobic interaction contribute to the physical forces for binding of bioactives. The key advantage of drug-loaded dendrimers is the delayed and sustained-release of bioactives because of the encapsulation of the drug in the hydrophobic cavities of the dendrimer that acts as a sink to retain the drug molecules for extended duration. Because of these features researchers are particularly excited about the potential application of dendrimers as a versatile carrier for drug delivery. Collectively, this review focuses on detailed note on the delivery and improved solubility of poorly soluble anti-cardiovascular bioactives, nitric oxide (NO) donor for anti-thrombosis, gene delivery and delivery of receptor agonists for cardio-protective action of the receptors using dendrimers.


Critical Reviews in Therapeutic Drug Carrier Systems | 2016

PLGA Nanoparticles and Their Versatile Role in Anticancer Drug Delivery

Iliyas Khan; Avinash Gothwal; Ashok Sharma; Prashant Kesharwani; Lokesh Gupta; Arun K. Iyer; Umesh Gupta

Nanotechnological advancement has become a key standard for the diagnosis and treatment of several complex disorders such as cancer by utilizing the enhanced permeability and retention effect and tumor-specific targeting. Synthesis and designing the formulation of active agents in terms of their efficient delivery is of prime importance for healthcare. The use of nanocarriers has resolved the undesirable characteristics of anticancer drugs such as low solubility and poor permeability in cells. Several types of nanoparticles (NPs) have been designed with the use of various polymers along or devoid of surface engineering for targeting tumor cells. All NPs include polymers in their framework and, of these, polylactide-co-glycolide (PLGA) is biodegradable and Food and Drug Administration approved for human use. PLGA has been used extensively in the development of NPs for anticancer drug delivery. The extensive use of PLGA NPs is promising for cancer therapy, with higher efficiency and less adverse effects. The present review focused on recent developments regarding PLGA NPs, the methods used for their preparation, their characterization, and their utility in the delivery of chemotherapeutic agents.


International Journal of Biological Macromolecules | 2017

Enhanced apoptotic and anticancer potential of paclitaxel loaded biodegradable nanoparticles based on chitosan

Umesh Gupta; Saurabh Sharma; Iliyas Khan; Avinash Gothwal; Ashok Sharma; Yuvraj Singh; Manish K. Chourasia; Vipin Kumar

Taxanes have established and proven effectivity against different types of cancers; in particular breast cancers. However, the high hemolytic toxicity and hydrophobic nature of paclitaxel and docetaxel have always posed challenges to achieve safe and effective delivery. Use of bio-degradable materials with an added advantage of nanotechnology could possibly improve the condition so as to achieve better and safe delivery. In the present study paclitaxel loaded chitosan nanoparticles were formulated and optimized using simple w/o nanoemulsion technique. The observed average size, pdi, zeta potential, entrapment efficiency and drug loading for the optimized paclitaxel loaded chitosan nanoparticle formulation (PTX-CS-NP-10) was 226.7±0.70nm, 0.345±0.039, 37.4±0.77mV, 79.24±2.95% and 11.57±0.81%; respectively. Nanoparticles were characterized further for size by Transmission Electron Microscopy (TEM). In vitro release studies exhibited sustained release pattern and more than 60% release was observed within 24h. Enhanced in vitro anticancer activity was observed as a result of MTT assay against triple negative MDA-MB-231 breast cancer cell lines. The observed IC50 values obtained for PTX-CS-NP-10 was 9.36±1.13μM and was almost 1.6 folds (p<0.05) less than the pure drug. Similarly, PTX-CS-NP-10 were extremely biocompatible and safe as observed for haemolytic toxicity which was almost 4 folds less (p<0.05) than the naïve drug. Anticancer activity was further evaluated using flow cytometry for apoptosis. Cell apoptosis study revealed that PTX-CS-NP-10 treatment resulted into enhanced (almost double) late cell apoptosis than naïve paclitaxel. Hence the developed nanoparticulate formulation not only reduced the overall toxicity but also resulted into improved anticancer efficacy of paclitaxel. It can be concluded that a robust, stable and comparatively safe nanoformulation of paclitaxel was developed, characterized and evaluated.


Drug Discovery Today | 2017

Dendrimer nanohybrid carrier systems: an expanding horizon for targeted drug and gene delivery

Prashant Kesharwani; Avinash Gothwal; Arun K. Iyer; Keerti Jain; Manish K. Chourasia; Umesh Gupta

Highly controllable dendritic structural design means dendrimers are a leading carrier in drug delivery applications. Dendrimer- and other nanocarrier-based hybrid systems are an emerging platform in the field of drug delivery. This review is a compilation of increasing reports of dendrimer interactions, such as dendrimer-liposome, dendrimer-carbon-nanotube, among others, known as hybrid carriers. This should prompt entirely new research with promising results for these hybrid carriers. It is assumed that such emerging hybrid nanosystems - from combining two already-established drug delivery platforms - could lead the way for the development of newer delivery systems with multiple applicability for latent theranostic applications in the future.


International Journal of Biological Macromolecules | 2016

Biodegradable nano-architectural PEGylated approach for the improved stability and anticancer efficacy of bendamustine.

Iliyas Khan; Avinash Gothwal; Ashok Sharma; Arem Qayum; Shashank K. Singh; Umesh Gupta

Bendamustine is a drug of choice for the treatment of several cancers including non- Hodgkin lymphoma (NHL) and Chronic Lymphocytic Leukemia (CLL). The unstable nature of the drug, however, offers a major obstacle in its effective formulation development. The present study was aimed to achieve improved stability and efficacy of bendamustine via co-polymeric PEG-PLGA nanoparticulate approach. PEG-PLGA co-polymeric conjugate was synthesized and characterized by FT-IR and 1H NMR spectroscopy. Bendamustine loaded nanoparticles (PLGA and PEG-PLGA) were prepared, optimized and characterized for size, zeta and electron microscopy (SEM and TEM). The average size, pdi (polydispersity index), zeta potential and entrapment efficiency for bendamustine loaded PEG-PLGA nanoparticles (PPBNP 15) was 297.3±2.055nm, 0.256±0.012, -6.62±0.081mV and 52.30±3.66%, respectively. The in vitro release studies displayed sustained release nature of bendamustine. The Krosmeyer-Peppas model was the best fit model as a result of kinetic modelling for in vitro release. The ex vivo hemolytic toxicity of the PPBNP 15 was significantly less (approx. 11%; 4 folds) compared to pure drug (p<0.05). The cytotoxicity study showed significantly higher anticancer activity against MCF-7, T47D and PC-3 cells (p<0.05) compared to naïve bendamustine. The developed biodegradable nanoparticles improved the stability of bendamustine and were equally stable, less toxic and highly effective against different cancerous cells.


International Journal of Pharmaceutics | 2017

Dendrimer encapsulated and conjugated delivery of berberine: A novel approach mitigating toxicity and improving in vivo pharmacokinetics

Lokesh Gupta; Ashok Sharma; Avinash Gothwal; Mohammed Shahid Khan; Mahaveer Prasad Khinchi; Arem Qayum; Shashank K. Singh; Umesh Gupta

Berberine (BBR) is a nitrogenous cyclic natural alkaloid with potential anticancer activity. However it has been less explored due to its poor pharmacokinetic profile. Dendrimers (e.g. PAMAM) have promising potential to deliver anticancer drugs/bio-actives because of their well-defined architecture, monodispersity and tailor-made surface functionality. In the present study it was attempted to deliver berberine through G4 PAMAM dendrimers by conjugation (BPC) as well as encapsulation (BPE) approach. The developed encapsulated and conjugated berberine formulations were found to have size in the approximate range of 100-200nm while zeta potential was almost same as PAMAM G4 dendrimer. The entrapment efficiency in BPE was found to be 29.9%, whereas, the percentage conjugation in BPC was found to be 37.49% indicating high drug payload in conjugation. The developed nano-formulations were characterized through 1H NMR, FT-IR as well as electron microscopy (SEM and TEM). The in vitro release study in different media (water and PBS 7.4) showed sustained release pattern of BBR. Almost 72% and 98% drug was released within 24h respectively; whereas in PBS almost 80% and 98% release was observed within 24h, respectively. The formulations followed Higuchi release and first order release as best fit release kinetic model. MTT assay results showed significantly higher anticancer activity for the PAMAM-BBR (BPC) (p<0.01) against MCF-7 and MDA-MB-468 breast cancer cells. The time dependent ex vivo hemolytic toxicity of the BPC and BPE was significantly less (<5%) even after 24h, which indicated that the formulations can be regarded as significantly safe and biocompatible. Similarly, the in vivo hematological parameters were analyzed through auto-analyzer and the formulations were found to be safer and biocompatible with very least but insignificant (p>0.05) effects. The in vivo pharmacokinetic parameters were found to be impressively improved in albino rat model. The pharmacokinetic parameters such as half-life (t1/2) and AUC of berberine were impressively improved in the plasma level time in vivo studies in albino rat model. The obtained t1/2 was 14.33h for BPC compared to 6.7h for BBR alone. The overall conclusion says that among both the developed formulations the conjugated formulation (BPC) was found to be more prominent than the encapsulated one (BPE). Therefore conclusively conjugation can be a better option for the delivery of natural bio-actives through dendrimers.


Pharmaceutical Nanotechnology | 2018

Intranasal Drug Delivery: A Non-Invasive Approach for the Better Delivery of Neurotherapeutics.

Hitesh Kumar; Gaurav Mishra; Ashok Sharma; Avinash Gothwal; Prashant Kesharwani; Umesh Gupta

BACKGROUND The convoluted pathophysiology of brain disorders along with penetration issue of drugs to brain represents major hurdle that requires some novel therapies. The blood-brain barrier (BBB) denotes a rigid barrier for delivery of therapeutics in vivo; to overcome this barrier, intranasal delivery is an excellent strategy to deliver the drug directly to brain via olfactory and trigeminal nerve pathways that originate as olfactory neuro-epithelium in the nasal cavity and terminate in brain. METHOD Kind of therapeutics like low molecular weight drugs can be delivered to the CNS via this route. In this review, we have outlined the anatomy and physiological aspect of nasal mucosa, certain hurdles, various strategies including importance of muco-adhesive polymers to increase the drug delivery and possible clinical prospects that partly contribute in intranasal drug delivery. RESULTS Exhaustive literature survey related to intranasal drug delivery system revealed the new strategy that circumvents the BBB, based on non-invasive concept for treating various CNS disorders. Numerous advantages like prompt effects, self-medication through wide-ranging devices, and the frequent as well protracted dosing are associated with this novel route. CONCLUSION Recently few reports have proven that nasal to brain drug delivery system bypasses the BBB. This novel route is associated with targeting efficiency and less exposure of therapeutic substances to non-target site. Nevertheless, this route desires much more research into the safe transferring of therapeutics to the brain. Role of muco-adhesive polymer and surface modification with specific ligands are area of interest of researcher to explore more about this.


Materials Science and Engineering: C | 2017

Polypropyleneimine and polyamidoamine dendrimer mediated enhanced solubilization of bortezomib: Comparison and evaluation of mechanistic aspects by thermodynamics and molecular simulations

Sonam Chaudhary; Avinash Gothwal; Iliyas Khan; Shubham Srivastava; Ruchi Malik; Umesh Gupta

Bortezomib (BTZ) is the first proteasome inhibitor approved by the US-FDA is majorly used for the treatment of newly diagnosed and relapsed multiple myeloma including mantle cell lymphoma. BTZ is hydrophobic in nature and is a major cause for its minimal presence as marketed formulations. The present study reports the design, development and characterization of dendrimer based formulation for the improved solubility and effectivity of bortezomib. The study also equally focuses on the mechanistic elucidation of solubilization by two types of dendrimers i.e. fourth generation of poly (amidoamine) dendrimers (G4-PAMAM-NH2) and fifth generation of poly (propylene) imine dendrimers (G5-PPI-NH2). It was observed that aqueous solubility of BTZ was concentration and pH dependent. At 2mM G5-PPI-NH2 concentration, the fold increase in bortezomib solubility was 1152.63 times in water, while approximately 3426.69 folds increase in solubility was observed at pH10.0, respectively (p<0.05). The solubility of the drug was increased to a greater extent with G5-PPI-NH2 dendrimers because it has more hydrophobic interior than G4-PAMAM-NH2 dendrimers. The release of BTZ from G5-PPI-NH2 complex was comparatively slower than G4-PAMAM-NH2. The thermodynamic treatment of data proved that dendrimer drug complexes were stable at all pH with values of ΔG always negative. The experimental findings were also proven by molecular simulation studies and by calculating RMSD and intermolecular hydrogen bonding through Schrodinger software. It was concluded that PPI dendrimers were able to solubilize the drug more effectively than PAMAM dendrimers through electrostatic interactions.

Collaboration


Dive into the Avinash Gothwal's collaboration.

Top Co-Authors

Avatar

Umesh Gupta

Central University of Rajasthan

View shared research outputs
Top Co-Authors

Avatar

Iliyas Khan

Central University of Rajasthan

View shared research outputs
Top Co-Authors

Avatar

Ashok Sharma

Central University of Rajasthan

View shared research outputs
Top Co-Authors

Avatar

Prashant Kesharwani

Central Drug Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anil K. Mishra

Indian Institute of Technology Guwahati

View shared research outputs
Top Co-Authors

Avatar

Ankur Kaul

Defence Research and Development Organisation

View shared research outputs
Top Co-Authors

Avatar

Hitesh Kumar

Central University of Rajasthan

View shared research outputs
Top Co-Authors

Avatar

Lokesh Gupta

Central University of Rajasthan

View shared research outputs
Top Co-Authors

Avatar

Manish K. Chourasia

Central Drug Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge