Avital Adler
Hebrew University of Jerusalem
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Avital Adler.
The Journal of Neuroscience | 2008
Mati Joshua; Avital Adler; Rea Mitelman; Eilon Vaadia; Hagai Bergman
Midbrain dopaminergic neurons (DANs) typically increase their discharge rate in response to appetitive predictive cues and outcomes, whereas striatal cholinergic tonically active interneurons (TANs) decrease their rate. This may indicate that the activity of TANs and DANs is negatively correlated and that TANs can broaden the basal ganglia reinforcement teaching signal, for instance by encoding worse than predicted events. We studied the activity of 106 DANs and 180 TANs of two monkeys recorded during the performance of a classical conditioning task with cues predicting the probability of food, neutral, and air puff outcomes. DANs responded to all cues with elevations of discharge rate, whereas TANs depressed their discharge rate. Nevertheless, although dopaminergic responses to appetitive cues were larger than their responses to neutral or aversive cues, the TAN responses were more similar. Both TANs and DANs responded faster to an air puff than to a food outcome; however, DANs responded with a discharge elevation, whereas the TAN responses included major negative and positive deflections. Finally, food versus air puff omission was better encoded by TANs. In terms of the activity of single neurons with distinct responses to the different behavioral events, both DANs and TANs were more strongly modulated by reward than by aversive related events and better reflected the probability of reward than aversive outcome. Thus, TANs and DANs encode the task episodes differentially. The DANs encode mainly the cue and outcome delivery, whereas the TANs mainly encode outcome delivery and omission at termination of the behavioral trial episode.
Current Opinion in Neurobiology | 2009
Mati Joshua; Avital Adler; Hagai Bergman
The basal ganglia are known to control behavior using reward information; however, recent experiments have revealed that the basal ganglia contribute to the processing of salient non-rewarding events as well. Here, we suggest that the temporal dynamics of the response of dopaminergic neurons (DANs) enable the basal ganglia to have a dual role. The fast DAN response to salient events is mediated thorough the brainstem-basal ganglia loop. Forebrain loops enable the second phase of the dopaminergic responses that require highly processed information. The convergent encoding of fast/salient and slow/detailed information suggests that the basal ganglia control the tradeoff between fast and immediate responses to environmental events and slow responses that are only executed after substantial environmental information has been gathered.
Neuron | 2009
Mati Joshua; Avital Adler; Yifat Prut; Eilon Vaadia; Jeffery R. Wickens; Hagai Bergman
The basal ganglia network is divided into two functionally related subsystems: the neuromodulators and the main axis. It is assumed that neuromodulators adjust cortico-striatal coupling. This adjustment might depend on the response properties and temporal interactions between neuromodulators. We studied functional interactions between simultaneously recorded pairs of neurons in the basal ganglia while monkeys performed a classical conditioning task that included rewarding, neutral, and aversive events. Neurons that belong to a single neuromodulator group exhibited similar average responses, whereas main axis neurons responded in a highly diverse manner. Dopaminergic neuromodulators transiently increased trial-to-trial (noise) correlation following rewarding but not aversive events, whereas cholinergic neurons of the striatum decreased their trial-to-trial correlation. These changes in functional connectivity occurred at different epochs of the trial. Thus, the coding scheme of neuromodulators (but not main axis neurons) can be viewed as a single-dimensional code that is further enriched by dynamic neuronal interactions.
Journal of Neurophysiology | 2009
Mati Joshua; Avital Adler; Boris Rosin; Eilon Vaadia; Hagai Bergman
Previous studies have rarely tested whether the activity of high-frequency discharge (HFD) neurons of the basal ganglia (BG) is modulated by expectation, delivery, and omission of aversive events. Therefore the full value domain encoded by the BG network is still unknown. We studied the activity of HFD neurons of the globus pallidus external segment (GPe, n=310), internal segment (GPi, n=149), and substantia nigra pars reticulata (SNr, n=145) in two monkeys during a classical conditioning task with cues predicting the probability of food, neutral, or airpuff outcomes. The responses of BG HFD neurons were long-lasting and diverse with coincident increases and decreases in discharge rate. The population responses to reward-related events were larger than the responses to aversive and neutral-related events. The latter responses were similar, except for the responses to actual airpuff delivery. The fraction of responding cells was larger for reward-related events, with better discrimination between rewarding and aversive trials in the responses with an increase rather than a decrease in discharge rate. GPe and GPi single units were more strongly modulated and better reflected the probability of reward- than aversive-related events. SNr neurons were less biased toward the encoding of the rewarding events, especially during the outcome epoch. Finally, the latency of SNr responses to all predictive cues was shorter than the latency of pallidal responses. These results suggest preferential activation of the BG HFD neurons by rewarding compared with aversive events.
The Journal of Neuroscience | 2012
Avital Adler; Shiran Katabi; Inna Finkes; Zvi Israel; Yifat Prut; Hagai Bergman
The basal ganglia (BG) have been hypothesized to implement a reinforcement learning algorithm. However, it is not clear how information is processed along this network, thus enabling it to perform its functional role. Here we present three different encoding schemes of visual cues associated with rewarding, neutral, and aversive outcomes by BG neuronal populations. We studied the response profile and dynamical behavior of two populations of projection neurons [striatal medium spiny neurons (MSNs), and neurons in the external segment of the globus pallidus (GPe)], and one neuromodulator group [striatal tonically active neurons (TANs)] from behaving monkeys. MSNs and GPe neurons displayed sustained average activity to cue presentation. The population average response of MSNs was composed of three distinct response groups that were temporally differentiated and fired in serial episodes along the trial. In the GPe, the average sustained response was composed of two response groups that were primarily differentiated by their immediate change in firing rate direction. However, unlike MSNs, neurons in both GPe response groups displayed prolonged and temporally overlapping persistent activity. The putamen TANs stereotyped response was characterized by a single transient response group. Finally, the MSN and GPe response groups reorganized at the outcome epoch, as different task events were reflected in different response groups. Our results strengthen the functional separation between BG neuromodulators and main axis neurons. Furthermore, they reveal dynamically changing cell assemblies in the striatal network of behaving primates. Finally, they support the functional convergence of the MSN response groups onto GPe cells.
The Journal of Neuroscience | 2010
Jesse H. Goldberg; Avital Adler; Hagai Bergman; Michale S. Fee
The songbird area X is a basal ganglia homolog that contains two pallidal cell types—local neurons that project within the basal ganglia and output neurons that project to the thalamus. Based on these projections, it has been proposed that these classes are structurally homologous to the primate external (GPe) and internal (GPi) pallidal segments. To test the hypothesis that the two area X pallidal types are functionally homologous to GPe and GPi neurons, we recorded from neurons in area X of singing juvenile male zebra finches, and directly compared their firing patterns to neurons recorded in the primate pallidus. In area X, we found two cell classes that exhibited high firing (HF) rates (>60 Hz) characteristic of pallidal neurons. HF-1 neurons, like most GPe neurons we examined, exhibited large firing rate modulations, including bursts and long pauses. In contrast, HF-2 neurons, like GPi neurons, discharged continuously without bursts or long pauses. To test whether HF-2 neurons were the output neurons that project to the thalamus, we next recorded directly from pallidal axon terminals in thalamic nucleus DLM, and found that all terminals exhibited singing-related firing patterns indistinguishable from HF-2 neurons. Our data show that singing-related neural activity distinguishes two putative pallidal cell types in area X: thalamus-projecting neurons that exhibit activity similar to the primate GPi, and non-thalamus-projecting neurons that exhibit activity similar to the primate GPe. These results suggest that song learning in birds and motor learning in mammals use conserved basal ganglia signaling strategies.
The Journal of Neuroscience | 2013
Avital Adler; Inna Finkes; Shiran Katabi; Yifat Prut; Hagai Bergman
Information is encoded in the nervous system through the discharge and synchronization of single neurons. The striatum, the input stage of the basal ganglia, is divided into three territories: the putamen, the caudate, and the ventral striatum, all of which converge onto the same motor pathway. This parallel organization suggests that there are multiple and competing systems in the basal ganglia network controlling behavior. To explore which mechanism(s) enables the different striatal domains to encode behavioral events and to control behavior, we compared the neural activity of phasically active neurons [medium spiny neurons (MSNs), presumed projection neurons] and tonically active neurons (presumed cholinergic interneurons) across striatal territories from monkeys during the performance of a well practiced task. Although neurons in all striatal territories displayed similar spontaneous discharge properties and similar temporal modulations of their discharge rates to the behavioral events, their correlation structure was profoundly different. The distributions of signal and noise correlation of pairs of putamen MSNs were strongly shifted toward positive correlations and these two measures were correlated. In contrast, MSN pairs in the caudate and ventral striatum displayed symmetrical, near-zero signal and noise correlation distributions. Furthermore, only putamen MSN pairs displayed different noise correlation dynamics to rewarding versus neutral/aversive cues. Similarly, the noise correlation between tonically active neuron pairs was stronger in the putamen than in the caudate. We suggest that the level of synchronization of the neuronal activity and its temporal dynamics differentiate the striatal territories and may thus account for the different roles that striatal domains play in behavioral control.
Frontiers in Systems Neuroscience | 2013
Avital Adler; Shiran Katabi; Inna Finkes; Yifat Prut; Hagai Bergman
The striatum is populated by a single projection neuron group, the medium spiny neurons (MSNs), and several groups of interneurons. Two of the electrophysiologically well-characterized striatal interneuron groups are the tonically active neurons (TANs), which are presumably cholinergic interneurons, and the fast spiking interneurons (FSIs), presumably parvalbumin (PV) expressing GABAergic interneurons. To better understand striatal processing it is thus crucial to define the functional relationship between MSNs and these interneurons in the awake and behaving animal. We used multiple electrodes and standard physiological methods to simultaneously record MSN spiking activity and the activity of TANs or FSIs from monkeys engaged in a classical conditioning paradigm. All three cell populations were highly responsive to the behavioral task. However, they displayed different average response profiles and a different degree of response synchronization (signal correlation). TANs displayed the most transient and synchronized response, MSNs the most diverse and sustained response and FSIs were in between on both parameters. We did not find evidence for direct monosynaptic connectivity between the MSNs and either the TANs or the FSIs. However, while the cross correlation histograms of TAN to MSN pairs were flat, those of FSI to MSN displayed positive asymmetrical broad peaks. The FSI-MSN correlogram profile implies that the spikes of MSNs follow those of FSIs and both are driven by a common, most likely cortical, input. Thus, the two populations of striatal interneurons are probably driven by different afferents and play complementary functional roles in the physiology of the striatal microcircuit.
Journal of Neuroscience Methods | 2009
Rea Mitelman; Mati Joshua; Avital Adler; Hagai Bergman
Accurate detection of the eye state (i.e., open or closed) of animals during electrophysiological recordings is often crucial for analyzing physiological data. This requires a system which is reliable, and preferably noninvasive and inexpensive. Here we present such a tool incorporating a standard digital camera and a semi-automatic eye state detection (ESD) algorithm that can be used easily in typical primate electrophysiological setups. The ESD algorithm is based on the high light absorbance of the iris and pupil relative to the eyelid and takes advantage of the unique conditions found in primate physiological recordings (minimal area of sclera and head fixation). The ESD algorithm is as accurate as a human observer, and is not vulnerable to variance inherent to human decisions that it requires (i.e., eye location setting, training set classification and threshold setting). The temporal resolution with standard interlaced digital cameras is 17-20 ms. This is sufficient for the detection of eye state changes during electrophysiological recordings including spontaneous blinking and eye blink conditioning, as demonstrated here. Furthermore, the ESD tool can be applied to other physiological areas of research in which changes in eye state are critical to analyzing neuronal activity.
The Journal of Neuroscience | 2015
Eitan Schechtman; Avital Adler; Marc Deffains; Hila Gabbay; Shiran Katabi; Aviv Mizrahi; Hagai Bergman
The external segment of the globus pallidus (GPe) is one of the core nuclei of the basal ganglia, playing a major role in normal control of behavior and in the pathophysiology of basal ganglia-related disorders such as Parkinsons disease. In vivo, most neurons in the GPe are characterized by high firing rates (50–100 spikes/s), interspersed with long periods (∼0.6 s) of complete silence, which are termed GPe pauses. Previous physiological studies of single and pairs of GPe neurons have failed to fully disclose the physiological process by which these pauses originate. We examined 1001 simultaneously recorded pairs of high-frequency discharge GPe cells recorded from four monkeys during task-irrelevant periods, considering the activity in one cell while the other is pausing. We found that pauses (n = 137,278 pauses) coincide with a small yet significant reduction in firing rate (0.78 ± 0.136 spikes/s) in other GPe cells. Additionally, we found an increase in the probability of the simultaneously recorded cell to pause during the pause period of the “trigger” cell. Importantly, this increase in the probability to pause at the same time does not account for the reduction in firing rate by itself. Modeling of GPe cells as class 2 excitability neurons (Hodgkin, 1948) with common external inputs can explain our results. We suggest that common inputs decrease the GPe discharge rate and lead to a bifurcation phenomenon (pause) in some of the GPe neurons.