Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Avital Swisa is active.

Publication


Featured researches published by Avital Swisa.


Molecular and Cellular Biology | 2008

Pancreatic Lkb1 Deletion Leads to Acinar Polarity Defects and Cystic Neoplasms

Sushma Gurumurthy; Zvi Granot; Avital Swisa; Gerry C. Chu; Gerald Bailey; Yuval Dor; Nabeel Bardeesy; Ronald A. DePinho

ABSTRACT LKB1 is a key regulator of energy homeostasis through the activation of AMP-activated protein kinase (AMPK) and is functionally linked to vascular development, cell polarity, and tumor suppression. In humans, germ line LKB1 loss-of-function mutations cause Peutz-Jeghers syndrome (PJS), which is characterized by a predisposition to gastrointestinal neoplasms marked by a high risk of pancreatic cancer. To explore the developmental and physiological functions of Lkb1 in vivo, we examined the impact of conditional Lkb1 deletion in the pancreatic epithelium of the mouse. The Lkb1-deficient pancreas, although grossly normal at birth, demonstrates a defective acinar cell polarity, an abnormal cytoskeletal organization, a loss of tight junctions, and an inactivation of the AMPK/MARK/SAD family kinases. Rapid and progressive postnatal acinar cell degeneration and acinar-to-ductal metaplasia occur, culminating in marked pancreatic insufficiency and the development of pancreatic serous cystadenomas, a tumor type associated with PJS. Lkb1 deficiency also impacts the pancreas endocrine compartment, characterized by smaller and scattered islets and transient alterations in glucose control. These genetic studies provide in vivo evidence of a key role for LKB1 in the establishment of epithelial cell polarity that is vital for pancreatic acinar cell function and viability and for the suppression of neoplasia.


Cell Metabolism | 2009

LKB1 Regulates Pancreatic β Cell Size, Polarity, and Function

Zvi Granot; Avital Swisa; Judith Magenheim; Miri Stolovich-Rain; Wakako Fujimoto; Elisabetta Manduchi; Takashi Miki; Jochen K. Lennerz; Christian J. Stoeckert; Oded Meyuhas; Susumu Seino; M. Alan Permutt; Helen Piwnica-Worms; Nabeel Bardeesy; Yuval Dor

Pancreatic beta cells, organized in the islets of Langerhans, sense glucose and secrete appropriate amounts of insulin. We have studied the roles of LKB1, a conserved kinase implicated in the control of cell polarity and energy metabolism, in adult beta cells. LKB1-deficient beta cells show a dramatic increase in insulin secretion in vivo. Histologically, LKB1-deficient beta cells have striking alterations in the localization of the nucleus and cilia relative to blood vessels, suggesting a shift from hepatocyte-like to columnar polarity. Additionally, LKB1 deficiency causes a 65% increase in beta cell volume. We show that distinct targets of LKB1 mediate these effects. LKB1 controls beta cell size, but not polarity, via the mTOR pathway. Conversely, the precise position of the beta cell nucleus, but not cell size, is controlled by the LKB1 target Par1b. Insulin secretion and content are restricted by LKB1, at least in part, via AMPK. These results expose a molecular mechanism, orchestrated by LKB1, for the coordinated maintenance of beta cell size, form, and function.


Nature Medicine | 2016

p16Ink4a-induced senescence of pancreatic beta cells enhances insulin secretion

Aharon Helman; Agnes Klochendler; Narmen Azazmeh; Yael Gabai; Elad Horwitz; Shira Anzi; Avital Swisa; Reba Condiotti; Roy Z. Granit; Yuval Nevo; Yaakov Fixler; Dorin Shreibman; Amit Zamir; Sharona Tornovsky-Babeay; Chunhua Dai; Benjamin Glaser; Alvin C. Powers; A. M. James Shapiro; Mark A. Magnuson; Yuval Dor; Ittai Ben-Porath

Cellular senescence is thought to contribute to age-associated deterioration of tissue physiology. The senescence effector p16Ink4a is expressed in pancreatic beta cells during aging and limits their proliferative potential; however, its effects on beta cell function are poorly characterized. We found that beta cell–specific activation of p16Ink4a in transgenic mice enhances glucose-stimulated insulin secretion (GSIS). In mice with diabetes, this leads to improved glucose homeostasis, providing an unexpected functional benefit. Expression of p16Ink4a in beta cells induces hallmarks of senescence—including cell enlargement, and greater glucose uptake and mitochondrial activity—which promote increased insulin secretion. GSIS increases during the normal aging of mice and is driven by elevated p16Ink4a activity. We found that islets from human adults contain p16Ink4a-expressing senescent beta cells and that senescence induced by p16Ink4a in a human beta cell line increases insulin secretion in a manner dependent, in part, on the activity of the mechanistic target of rapamycin (mTOR) and the peroxisome proliferator-activated receptor (PPAR)-γ proteins. Our findings reveal a novel role for p16Ink4a and cellular senescence in promoting insulin secretion by beta cells and in regulating normal functional tissue maturation with age.


Molecular Endocrinology | 2013

AMPK Regulates ER Morphology and Function in Stressed Pancreatic β-Cells via Phosphorylation of DRP1

Jakob D. Wikstrom; Tal Israeli; Etty Bachar-Wikstrom; Avital Swisa; Yafa Ariav; Meytal Waiss; Daniel Kaganovich; Yuval Dor; Erol Cerasi; Gil Leibowitz

Experimental lipotoxicity constitutes a model for β-cell demise induced by metabolic stress in obesity and type 2 diabetes. Fatty acid excess induces endoplasmic reticulum (ER) stress, which is accompanied by ER morphological changes whose mechanisms and relevance are unknown. We found that the GTPase dynamin-related protein 1 (DRP1), a key regulator of mitochondrial fission, is an ER resident regulating ER morphology in stressed β-cells. Inhibition of DRP1 activity using a GTP hydrolysis-defective mutant (Ad-K38A) attenuated fatty acid-induced ER expansion and mitochondrial fission. Strikingly, stimulating the key energy-sensor AMP-activated protein kinase (AMPK) increased the phosphorylation at the anti-fission site Serine 637 and largely prevented the alterations in ER and mitochondrial morphology. Expression of a DRP1 mutant resistant to phosphorylation at this position partially prevented the recovery of ER and mitochondrial morphology by AMPK. Fatty acid-induced ER enlargement was associated with proinsulin retention in the ER, together with increased proinsulin/insulin ratio. Stimulation of AMPK prevented these alterations, as well as mitochondrial fragmentation and apoptosis. In summary, DRP1 regulation by AMPK delineates a novel pathway controlling ER and mitochondrial morphology, thereby modulating the response of β-cells to metabolic stress. DRP1 may thus function as a node integrating signals from stress regulators, such as AMPK, to coordinate organelle shape and function.


The FASEB Journal | 2014

LKB1 and AMPK differentially regulate pancreatic β-cell identity

Marina Kone; Timothy J. Pullen; Gao Sun; Mark Ibberson; Aida Martinez-Sanchez; Sophie Sayers; Marie-Sophie Nguyen-Tu; Chase Kantor; Avital Swisa; Yuval Dor; Tracy Gorman; Jorge Ferrer; Bernard Thorens; Frank Reimann; Fiona M. Gribble; James McGinty; Lingling Chen; Paul M. W. French; Fabian Birzele; Tobias Hildebrandt; Ingo Uphues; Guy A. Rutter

Fully differentiated pancreatic β cells are essential for normal glucose homeostasis in mammals. Dedifferentiation of these cells has been suggested to occur in type 2 diabetes, impairing insulin production. Since chronic fuel excess (“glucotoxicity”) is implicated in this process, we sought here to identify the potential roles in β‐cell identity of the tumor suppressor liver kinase B1 (LKB1/STK11) and the downstream fuel‐sensitive kinase, AMP‐activated protein kinase (AMPK). Highly β‐cell‐restricted deletion of each kinase in mice, using an Ins1‐controlled Cre, was therefore followed by physiological, morphometric, and massive parallel sequencing analysis. Loss of LKB1 strikingly (2.0‐12‐fold, E<0.01) increased the expression of subsets of hepatic (Alb, Iyd, Elovl2) and neuronal (Nptx2, Dlgap2, Cartpt, Pdyn) genes, enhancing glutamate signaling. These changes were partially recapitulated by the loss of AMPK, which also up‐regulated β‐cell “disallowed” genes (Slc16a1, Ldha, Mgst1, Pdgfra) 1.8‐ to 3.4‐fold (E<0.01). Correspondingly, targeted promoters were enriched for neuronal (Zfp206; P= 1.3×10‐33) and hypoxia‐regulated (HIF1; P= 2.5×10‐16) transcription factors. In summary, LKB1 and AMPK, through only partly overlapping mechanisms, maintain β‐cell identity by suppressing alternate pathways leading to neuronal, hepatic, and other characteristics. Selective targeting of these enzymes may provide a new approach to maintaining β‐cell function in some forms of diabetes.—Kone, M., Pullen, T. J., Sun, G., Ibberson, M., Martinez‐Sanchez, A., Sayers, S., Nguyen‐Tu, M.‐S., Kantor, C., Swisa, A., Dor, Y., Gorman, T., Ferrer, J., Thorens, B., Reimann, F., Gribble, F., McGinty, J. A., Chen, L., French, P. M., Birzele, F., Hildebrandt, T., Uphues, I., Rutter, G. A., LKB1 and AMPK differentially regulate pancreatic β‐cell identity. FASEB J. 28, 4972–4985 (2014). www.fasebj.org


Cancer Research | 2013

Phosphorylation of ribosomal protein S6 attenuates DNA damage and tumor suppression during development of pancreatic cancer

Abed Khalaileh; Avigail Dreazen; Areej Khatib; Roy Apel; Avital Swisa; Norma Kidess-Bassir; Anirban Maitra; Oded Meyuhas; Yuval Dor; Gideon Zamir

The signaling pathways that mediate the development of pancreatic ductal adenocarcinoma (PDAC) downstream of mutant Kras remain incompletely understood. Here, we focus on ribosomal protein S6 (rpS6), an mTOR effector not implicated previously in cancer. Phosphorylation of rpS6 was increased in pancreatic acinar cells upon implantation of the chemical carcinogen 7,12-dimethylbenz(a)anthracene (DMBA) or transgenic expression of mutant Kras. To examine the functional significance of rpS6 phosphorylation, we used knockin mice lacking all five phosphorylatable sites in rpS6 (termed rpS6(P-/-) mice). Strikingly, the development of pancreatic cancer precursor lesions induced by either DMBA or mutant Kras was greatly reduced in rpS6(P-/-) mice. The rpS6 mutants expressing oncogenic Kras showed increased p53 along with increased staining of γ-H2AX and 53bp1 (Trp53bp1) in areas of acinar ductal metaplasia, suggesting that rpS6 phosphorylation attenuates Kras-induced DNA damage and p53-mediated tumor suppression. These results reveal that rpS6 phosphorylation is important for the initiation of pancreatic cancer.


Developmental Cell | 2012

A Transgenic Mouse Marking Live Replicating Cells Reveals In Vivo Transcriptional Program of Proliferation

Agnes Klochendler; Noa Weinberg-Corem; Maya Moran; Avital Swisa; Nathalie Pochet; Virginia Savova; Jonas Vikeså; Yves Van de Peer; Michael Brandeis; Aviv Regev; Finn Cilius Nielsen; Yuval Dor; Amir Eden

Most adult mammalian tissues are quiescent, with rare cell divisions serving to maintain homeostasis. At present, the isolation and study of replicating cells from their in vivo niche typically involves immunostaining for intracellular markers of proliferation, causing the loss of sensitive biological material. We describe a transgenic mouse strain, expressing a CyclinB1-GFP fusion reporter, that marks replicating cells in the S/G2/M phases of the cell cycle. Using flow cytometry, we isolate live replicating cells from the liver and compare their transcriptome to that of quiescent cells to reveal gene expression programs associated with cell proliferation in vivo. We find that replicating hepatocytes have reduced expression of genes characteristic of liver differentiation. This reporter system provides a powerful platform for gene expression and metabolic and functional studies of replicating cells in their in vivo niche.


Journal of Clinical Investigation | 2017

PAX6 maintains β cell identity by repressing genes of alternative islet cell types

Avital Swisa; Dana Avrahami; Noa Eden; Jia Zhang; Eseye Feleke; Tehila Dahan; Yamit Cohen-Tayar; Miri Stolovich-Rain; Klaus H. Kaestner; Benjamin Glaser; Ruth Ashery-Padan; Yuval Dor

Type 2 diabetes is thought to involve a compromised &bgr; cell differentiation state, but the mechanisms underlying this dysfunction remain unclear. Here, we report a key role for the TF PAX6 in the maintenance of adult &bgr; cell identity and function. PAX6 was downregulated in &bgr; cells of diabetic db/db mice and in WT mice treated with an insulin receptor antagonist, revealing metabolic control of expression. Deletion of Pax6 in &bgr; cells of adult mice led to lethal hyperglycemia and ketosis that were attributed to loss of &bgr; cell function and expansion of &agr; cells. Lineage-tracing, transcriptome, and chromatin analyses showed that PAX6 is a direct activator of &bgr; cell genes, thus maintaining mature &bgr; cell function and identity. In parallel, we found that PAX6 binds promoters and enhancers to repress alternative islet cell genes including ghrelin, glucagon, and somatostatin. Chromatin analysis and shRNA-mediated gene suppression experiments indicated a similar function of PAX6 in human &bgr; cells. We conclude that reduced expression of PAX6 in metabolically stressed &bgr; cells may contribute to &bgr; cell failure and &agr; cell dysfunction in diabetes.


Journal of Biological Chemistry | 2015

Loss of Liver Kinase B1 (LKB1) in Beta Cells Enhances Glucose-stimulated Insulin Secretion Despite Profound Mitochondrial Defects

Avital Swisa; Zvi Granot; Natalia A. Tamarina; Sophie Sayers; Nabeel Bardeesy; Louis H. Philipson; David J. Hodson; Jakob D. Wikstrom; Guy A. Rutter; Gil Leibowitz; Benjamin Glaser; Yuval Dor

Background: LKB1 regulates multiple aspects of pancreatic β cell biology. Results: LKB1 loss in β cells leads to profound mitochondrial defects yet increases glucose-stimulated insulin secretion in a mitochondria-independent mechanism. Conclusion: LKB1 is essential for mitochondrial maintenance and negatively regulates a distal step of insulin secretion. Significance: LKB1 loss exposes powerful mechanisms of insulin secretion that can override defects in the classic triggering pathway. The tumor suppressor liver kinase B1 (LKB1) is an important regulator of pancreatic β cell biology. LKB1-dependent phosphorylation of distinct AMPK (adenosine monophosphate-activated protein kinase) family members determines proper β cell polarity and restricts β cell size, total β cell mass, and glucose-stimulated insulin secretion (GSIS). However, the full spectrum of LKB1 effects and the mechanisms involved in the secretory phenotype remain incompletely understood. We report here that in the absence of LKB1 in β cells, GSIS is dramatically and persistently improved. The enhancement is seen both in vivo and in vitro and cannot be explained by altered cell polarity, increased β cell number, or increased insulin content. Increased secretion does require membrane depolarization and calcium influx but appears to rely mostly on a distal step in the secretion pathway. Surprisingly, enhanced GSIS is seen despite profound defects in mitochondrial structure and function in LKB1-deficient β cells, expected to greatly diminish insulin secretion via the classic triggering pathway. Thus LKB1 is essential for mitochondrial homeostasis in β cells and in parallel is a powerful negative regulator of insulin secretion. This study shows that β cells can be manipulated to enhance GSIS to supra-normal levels even in the face of defective mitochondria and without deterioration over months.


Diabetes | 2013

Conditional Hypovascularization and Hypoxia in Islets Do Not Overtly Influence Adult β-Cell Mass or Function

Joke D'Hoker; Nico De Leu; Yves Heremans; Luc Baeyens; Kohtaro Minami; Cai Ying; Astrid Lavens; Marie Chintinne; Geert Stangé; Judith Magenheim; Avital Swisa; Geert A. Martens; Daniel Pipeleers; Mark Van de Casteele; Susumo Seino; Eli Keshet; Yuval Dor; Harry Heimberg

It is generally accepted that vascularization and oxygenation of pancreatic islets are essential for the maintenance of an optimal β-cell mass and function and that signaling by vascular endothelial growth factor (VEGF) is crucial for pancreas development, insulin gene expression/secretion, and (compensatory) β-cell proliferation. A novel mouse model was designed to allow conditional production of human sFlt1 by β-cells in order to trap VEGF and study the effect of time-dependent inhibition of VEGF signaling on adult β-cell fate and metabolism. Secretion of sFlt1 by adult β-cells resulted in a rapid regression of blood vessels and hypoxia within the islets. Besides blunted insulin release, β-cells displayed a remarkable capacity for coping with these presumed unfavorable conditions: even after prolonged periods of blood vessel ablation, basal and stimulated blood glucose levels were only slightly increased, while β-cell proliferation and mass remained unaffected. Moreover, ablation of blood vessels did not prevent β-cell generation after severe pancreas injury by partial pancreatic duct ligation or partial pancreatectomy. Our data thus argue against a major role of blood vessels to preserve adult β-cell generation and function, restricting their importance to facilitating rapid and adequate insulin delivery.

Collaboration


Dive into the Avital Swisa's collaboration.

Top Co-Authors

Avatar

Yuval Dor

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Benjamin Glaser

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Judith Magenheim

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Agnes Klochendler

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Elad Horwitz

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Gil Leibowitz

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Miri Stolovich-Rain

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Tehila Dahan

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Zvi Granot

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge