Aviva M. Tolkovsky
University of Cambridge
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Aviva M. Tolkovsky.
Molecular and Cellular Neuroscience | 1999
Luzheng Xue; Graham C. Fletcher; Aviva M. Tolkovsky
Autophagy is a mechanism whereby cells digest themselves from within and so may be used in lieu of apoptosis to execute cell death. Little is known about its role in neurons. In newly isolated sympathetic neurons, two independent apoptotic stimuli, NGF-deprivation or cytosine arabinoside added in the presence of NGF, caused a 30-fold increase in autophagic particle numbers, many autophagosomes appearing before any signs of DNA-fragmentation. The anti-autophagic drug 3-methyladenine also delayed apoptosis, its neuroprotection correlating with inhibition of cytochrome c release from mitochondria and prevention of caspase activation. In contrast, autophagic activity remained elevated in neurons treated with the pan-caspase inhibitor Boc-Asp(OMe)fmk, which inhibited morphological apoptosis but did not inhibit cytochrome c release nor prevent cell death. We propose that the same apoptotic signals that cause mitochondrial dysfunction also activate autophagy. Once activated, autophagy may mediate caspase-independent neuronal death.
Autophagy | 2005
David C. Rubinsztein; Marian DiFiglia; Nathaniel Heintz; Ralph A. Nixon; Zheng-Hong Qin; Brinda Ravikumar; Leonidas Stefanis; Aviva M. Tolkovsky
Increased numbers of autophagosomes are seen in a variety of physiological and pathological states in the nervous system. In many cases, it is unclear if this phenomenon is the result of increased autophagic activity or decreased autophagosome-lysosome fusion. The functional significance of autophagy and its relationship to cell death in the nervous system is also poorly understood. In this review, we have considered these issues in the context of acute neuronal injury and a range of chronic neurodegenerative conditions, including the Lurcher mouse, Alzheimer’s, Parkinson’s, Huntington’s, and prion diseases. While many issues remain unresolved, these conditions raise the possibility that autophagy can have either deleterious or protective effects depending on the specific situation and stage in the pathological process.
Autophagy | 2005
Edward T. W. Bampton; Christoph G. Goemans; Dhevahi Niranjan; Noboru Mizushima; Aviva M. Tolkovsky
Autophagy has been implicated in a range of disorders and hence is of major interest. However, imaging autophagy in real time has been hampered by lack of suitable markers. We have compared the potential of monodansylcadaverine, widely used as an autophagosomal marker, and the Atg8 homologue LC3, to follow autophagy by fluorescence microscopy whilst labelling late endosomes and lysosomes simultaneously using EGFP-CD63. Monodansylcadaverine labelled only acidic CD63-positive compartments in response to a range of autophagic inducers in various live or post-fixed cells, staining being identical in atg5+/+ and atg5-/- MEFs in which autophagosome formation is disabled. Monodansylcadaverine staining was essentially indistinguishable from that of LysoTracker Red, LAMP1 or LAMP2. In contrast, 60-90% of EGFP-LC3-positive punctate organelles did not colocalise with LAMP1/LAMP2/CD63 and were monodansylcadaverine-negative while EGFP-LC3 puncta that did colocalise with LAMP1/LAMP2/CD63 were also monodansylcadaverine-positive. Hence monodansylcadaverine is no different from other markers of acidic compartments and it cannot be used to follow autophagosome formation. In contrast, fusion of mRFP-LC3-labelled autophagosomes with EGFP-CD63-positive endosomes and lysosomes and sequestration of dsRed-labelled mitochondria by EGFP-LC3- and EGFP-CD63-positive compartments could be visualised in real time. Moreover, transition of EGFP-LC3-I (45 kDa) to EGFP-LC3-II (43 kDa) - traced by immunoblotting and verified by [3H]ethanolamine labelling - revealed novel insights into the dynamics of autophagosome homeostasis, including the rapid activation of autophagy by the apoptotic inducer staurosporine prior to apoptosis proper. Use of fluorescent LC3 and a counterfluorescent endosomal/lysosomal protein clearly allows the entire autophagic process to be followed by live cell imaging with high fidelity.
The Journal of Neuroscience | 1999
Christopher N. G. Anderson; Aviva M. Tolkovsky
The antimitotic nucleoside cytosine arabinoside (araC) causes apoptosis in postmitotic neurons for which two mechanisms have been suggested: (1) araC directly inhibits a trophic factor-maintained signaling pathway required for survival, effectively mimicking trophic factor withdrawal; and (2) araC induces apoptosis by a p53-dependent mechanism distinct from trophic factor withdrawal. In rat sympathetic neurons, we found that araC treatment for 12 hr induced ∼25% apoptosis without affecting NGF-maintained signaling; there was neither reduction in the activity of mitogen actived protein kinase/extracellular signal-regulated kinase (MAPK/ERK) or protein kinase B/Akt, a kinase implicated in NGF-mediated survival, nor was there c-Jun N-terminal kinase (JNK) activation or c-Jun N-terminal phosphorylation, events implicated in apoptosis induced by NGF withdrawal. However, araC treatment, but not NGF-withdrawal, elevated expression of p53 protein before and during apoptosis. Additionally, araC-induced apoptosis was suppressed in sympathetic neurons from p53 null mice. Although MAPK/ERK activity is not necessary for NGF-induced survival, it protected against toxicity by araC, because inhibition of the MAPK pathway by PD98059 resulted in a significant increase in the rate of apoptosis induced by araC in the presence of NGF. Consistent with this finding, ciliary neurotrophic factor, which does not cause sustained activation of MAPK/ERK, did not protect against araC toxicity. Our data show that, in contrast to NGF deprivation, araC induces apoptosis via a p53-dependent, JNK-independent mechanism, against which MAPK/ERK plays a substantial protective role. Thus, NGF can suppress apoptotic mechanisms in addition to those caused by its own deprivation.
Current Biology | 2001
Luzheng Xue; Graham C. Fletcher; Aviva M. Tolkovsky
Pan caspase inhibitors are potentially powerful cell-protective agents that block apoptosis in response to a wide variety of insults that cause tissue degeneration. In many conditions, however, the blockade of apoptosis by caspase inhibitors does not permit long-term cell survival, but the reasons are not entirely clear. Here we show that the blockade of apoptosis by Boc.Aspartyl(O-methyl)CH2F can result in the highly selective elimination of the entire cohort of mitochondria, including mitochondrial DNA, from both neurons and HeLa cells, irrespective of the stimulus used to trigger apoptosis. In cells that lose their mitochondria, the nuclear DNA, Golgi apparatus, endoplasmic reticulum, centrioles, and plasma membrane remain undamaged. The capacity to remove mitochondria is both specific and regulated since mitochondrial loss in neurons is completely prevented by the expression of the antiapoptotic protein Bcl-2 and partially suppressed by the autolysosomal inhibitor bafilomycin. Cells without mitochondria are more tolerant to an anaerobic environment but are essentially irreversibly committed to death. Prevention of mitochondrial loss may be crucial for the long-term regeneration of tissues emerging from an apoptotic episode in which death was prevented by caspase blockade.
Journal of Immunology | 2011
Jonas J. Neher; Urte Neniskyte; Jing-Wei Zhao; Anna Bal-Price; Aviva M. Tolkovsky; Guy C. Brown
It is well-known that dead and dying neurons are quickly removed through phagocytosis by the brain’s macrophages, the microglia. Therefore, neuronal loss during brain inflammation has always been assumed to be due to phagocytosis of neurons subsequent to their apoptotic or necrotic death. However, we report in this article that under inflammatory conditions in primary rat cultures of neurons and glia, phagocytosis actively induces neuronal death. Specifically, two inflammatory bacterial ligands, lipoteichoic acid or LPS (agonists of glial TLR2 and TLR4, respectively), stimulated microglial proliferation, phagocytic activity, and engulfment of ∼30% of neurons within 3 d. Phagocytosis of neurons was dependent on the microglial release of soluble mediators (and peroxynitrite in particular), which induced neuronal exposure of the eat-me signal phosphatidylserine (PS). Surprisingly, however, eat-me signaling was reversible, so that blocking any step in a phagocytic pathway consisting of PS exposure, the PS-binding protein milk fat globule epidermal growth factor-8, and its microglial vitronectin receptor was sufficient to rescue up to 90% of neurons without reducing inflammation. Hence, our data indicate a novel form of inflammatory neurodegeneration, where inflammation can cause eat-me signal exposure by otherwise viable neurons, leading to their death through phagocytosis. Thus, blocking phagocytosis may prevent some forms of inflammatory neurodegeneration, and therefore might be beneficial during brain infection, trauma, ischemia, neurodegeneration, and aging.
Current Biology | 2000
Kanwar Virdee; P.A. Parone; Aviva M. Tolkovsky
Phosphorylation of BAD, a pro-apoptotic member of the Bcl-2 protein family, on either Ser112 or Ser136 is thought to be necessary and sufficient for growth factors to promote cell survival. Here we report that Ser155, a site phosphorylated by protein kinase A (PKA), also contributes to cell survival. Ser112 is thought to be the critical PKA target, but we found that BAD fusion proteins containing Ala at Ser112 (S112A) or Ser136 (S136A) or at both positions (S112/136A) were still heavily phosphorylated by PKA in an in vitro kinase assay. BAD became insensitive to phosphorylation by PKA only when both Ser112 and Ser136, or all three serines (S112/136/155) were mutated to alanine. In HEK293 cells, BAD fusion proteins mutated at Ser155 were refractory to phosphorylation induced by elevation of cyclic AMP(cAMP) levels. Phosphorylation of the S112/136A mutant was >90% inhibited by H89, a PKA inhibitor. The S155A mutant induced more apoptosis than the wild-type protein in serum-maintained CHO-K1 cells, and apoptosis induced by the S112/136A mutant was potentiated by serum withdrawal. These data suggest that Ser155 is a major site of phosphorylation by PKA and serum-induced kinases. Like Ser112 and Ser136, phosphorylation of Ser155 contributes to the cancellation of the pro-apoptotic function of BAD.
Journal of Biological Chemistry | 2001
Thomas C. Harding; Luzheng Xue; Ali Bienemann; Darren Haywood; Martin Dickens; Aviva M. Tolkovsky; James B. Uney
Studies in non-neuronal cells show that c-Jun N-terminal kinases (JNK) play a key role in apoptotic cell death. In some neurons JNK is also thought to initiate cell death by the activation of c-Jun. JNK inhibition has been achieved pharmacologically by inhibiting upstream kinases, but there has been no direct demonstration that inhibition of JNK can prevent neuronal death. We have therefore examined whether the JNK binding domain (JBD) of JNK-interacting protein-1 (JIP-1, a scaffold protein and specific inhibitor of JNK) can inhibit c-Jun phosphorylation and support the survival of sympathetic neurons deprived of NGF. We show that expression of the JBD in >80% of neurons was sufficient to prevent the phosphorylation of c-Jun and its nuclear accumulation as well as abrogate neuronal cell death induced by NGF deprivation. JBD expression also preserved the capacity of mitochondria to reduce MTT. Interestingly, although the PTB domain of JIP was reported to interact with rhoGEF, expression of the JBD domain was sufficient to localize the protein to the membrane cortex and growth cones. Hence, JNK activation is a key event in apoptotic death induced by NGF withdrawal, where its point of action lies upstream of mitochondrial dysfunction.
Journal of Neurochemistry | 2002
Kanwar Virdee; Andrew J. Bannister; Stephen P. Hunt; Aviva M. Tolkovsky
Abstract: We have investigated the relationship between c‐Jun N‐terminal kinase (JNK) activity, apoptosis, and the potential of survival factors to rescue primary rat sympathetic neurones deprived of trophic support. Incubation of sympathetic neurones in the absence of nerve growth factor (NGF) caused a time‐dependent increase in JNK activity, which became apparent by 3 h and attained maximal levels that were three‐ to fourfold higher than activity measured in neurones maintained for the same periods with NGF. Continuous culture in the presence of either NGF or the cyclic AMP analogue 4‐(8‐chlorophenylthio) cyclic AMP (CPTcAMP) not only prevented JNK activation from occurring, but also suppressed JNK activity that had been elevated by prior culture of the neurones in the absence of trophic support. When either NGF or CPTcAMP was added to cultures that had been initially deprived of neurotrophic support for up to 10 h, this resulted in complete suppression of total JNK activity, arrest of apoptosis, and rescue of >90% of the neurones that did not display apoptotic morphology by this time. However, when either agent was added after more protracted periods of initial neurotrophin deprivation (≥ 14 h), although this also resulted in near‐complete suppression of total JNK activity and short‐term arrest of apoptosis, not all of the neurones that appeared to be nonapoptotic at the time of agent addition were rescued. The lack of death commitment after 10 h of maintained JNK activity was not due to a late induction of c‐Jun expression, because the majority of newly isolated sympathetic neurones had already been expressing high levels of c‐Jun in their nuclei for several hours, yet were capable of being rescued by NGF. Elevation of JNK activity as a result of neurotrophic‐factor deprivation was also associated with enhanced phosphorylation of c‐Jun, assessed by immunoblot analysis and immunocytochemistry, and addition of NGF to cultures previously deprived of neurotrophic support resulted in a reversion of the state of phospho‐c‐Jun to that observed in cultures that had been maintained in the continuous presence of trophic support. We conclude that activation of JNK and c‐Jun phosphorylation are not necessarily rate‐limiting for apoptosis induction. In some neurones undergoing prolonged NGF deprivation, suppression of JNK activity and c‐Jun dephosphorylation by NGF may be insufficient to effect their rescue. Thus, if c‐Jun mediates death by increasing the expression of “death” genes, these must become effective very close to the death commitment point.
The Journal of Neuroscience | 2010
Frédéric Léveillé; Sofia Papadia; Michael Fricker; Karen Bell; Francesc X. Soriano; Marc-André Martel; Clare A. Puddifoot; Marlen Habel; David J. A. Wyllie; Chrysanthy Ikonomidou; Aviva M. Tolkovsky; Giles E. Hardingham
Synaptic activity promotes resistance to diverse apoptotic insults, the mechanism behind which is incompletely understood. We show here that a coordinated downregulation of core components of the intrinsic apoptosis pathway by neuronal activity forms a key part of the underlying mechanism. Activity-dependent protection against apoptotic insults is associated with inhibition of cytochrome c release in most but not all neurons, indicative of anti-apoptotic signaling both upstream and downstream of this step. We find that enhanced firing activity suppresses expression of the proapoptotic BH3-only member gene Puma in a NMDA receptor-dependent, p53-independent manner. Puma expression is sufficient to induce cytochrome c loss and neuronal apoptosis. Puma deficiency protects neurons against apoptosis and also occludes the protective effect of synaptic activity, while blockade of physiological NMDA receptor activity in the developing mouse brain induces neuronal apoptosis that is preceded by upregulation of Puma. However, enhanced activity can also confer resistance to Puma-induced apoptosis, acting downstream of cytochrome c release. This mechanism is mediated by transcriptional suppression of apoptosome components Apaf-1 and procaspase-9, and limiting caspase-9 activity, since overexpression of procaspase-9 accelerates the rate of apoptosis in active neurons back to control levels. Synaptic activity does not exert further significant anti-apoptotic effects downstream of caspase-9 activation, since an inducible form of caspase-9 overrides the protective effect of synaptic activity, despite activity-induced transcriptional suppression of caspase-3. Thus, suppression of apoptotic gene expression may synergize with other activity-dependent events such as enhancement of antioxidant defenses to promote neuronal survival.