Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Avvaru N. Suhasini is active.

Publication


Featured researches published by Avvaru N. Suhasini.


The EMBO Journal | 2011

Interaction between the helicases genetically linked to Fanconi anemia group J and Bloom's syndrome

Avvaru N. Suhasini; Nina Rawtani; Yuliang Wu; Joshua A. Sommers; Sudha Sharma; Georgina Mosedale; Phillip S. North; Sharon B. Cantor; Ian D. Hickson; Robert M. Brosh

Blooms syndrome (BS) and Fanconi anemia (FA) are autosomal recessive disorders characterized by cancer and chromosomal instability. BS and FA group J arise from mutations in the BLM and FANCJ genes, respectively, which encode DNA helicases. In this work, FANCJ and BLM were found to interact physically and functionally in human cells and co‐localize to nuclear foci in response to replication stress. The cellular level of BLM is strongly dependent upon FANCJ, and BLM is degraded by a proteasome‐mediated pathway when FANCJ is depleted. FANCJ‐deficient cells display increased sister chromatid exchange and sensitivity to replication stress. Expression of a FANCJ C‐terminal fragment that interacts with BLM exerted a dominant negative effect on hydroxyurea resistance by interfering with the FANCJ–BLM interaction. FANCJ and BLM synergistically unwound a DNA duplex substrate with sugar phosphate backbone discontinuity, but not an ‘undamaged’ duplex. Collectively, the results suggest that FANCJ catalytic activity and its effect on BLM protein stability contribute to preservation of genomic stability and a normal response to replication stress.


Journal of Biological Chemistry | 2009

FANCJ helicase uniquely senses oxidative base damage in either strand of duplex DNA and is stimulated by replication protein A to unwind the damaged DNA substrate in a strand-specific manner.

Avvaru N. Suhasini; Joshua A. Sommers; Aaron C. Mason; Oleg N. Voloshin; R. Daniel Camerini-Otero; Marc S. Wold; Robert M. Brosh

FANCJ mutations are genetically linked to the Fanconi anemia complementation group J and predispose individuals to breast cancer. Understanding the role of FANCJ in DNA metabolism and how FANCJ dysfunction leads to tumorigenesis requires mechanistic studies of FANCJ helicase and its protein partners. In this work, we have examined the ability of FANCJ to unwind DNA molecules with specific base damage that can be mutagenic or lethal. FANCJ was inhibited by a single thymine glycol, but not 8-oxoguanine, in either the translocating or nontranslocating strands of the helicase substrate. In contrast, the human RecQ helicases (BLM, RECQ1, and WRN) display strand-specific inhibition of unwinding by the thymine glycol damage, whereas other DNA helicases (DinG, DnaB, and UvrD) are not significantly inhibited by thymine glycol in either strand. In the presence of replication protein A (RPA), but not Escherichia coli single-stranded DNA-binding protein, FANCJ efficiently unwound the DNA substrate harboring the thymine glycol damage in the nontranslocating strand; however, inhibition of FANCJ helicase activity by the translocating strand thymine glycol was not relieved. Strand-specific stimulation of human RECQ1 helicase activity was also observed, and RPA bound with high affinity to single-stranded DNA containing a single thymine glycol. Based on the biochemical studies, we propose a model for the specific functional interaction between RPA and FANCJ on the thymine glycol substrates. These studies are relevant to the roles of RPA, FANCJ, and other DNA helicases in the metabolism of damaged DNA that can interfere with basic cellular processes of DNA metabolism.


Blood | 2010

Fanconi anemia group J mutation abolishes its DNA repair function by uncoupling DNA translocation from helicase activity or disruption of protein-DNA complexes

Yuliang Wu; Joshua A. Sommers; Avvaru N. Suhasini; Thomas Leonard; Julianna S. Deakyne; Alexander V. Mazin; Kazuo Shin-ya; Hiroyuki Kitao; Robert M. Brosh

Fanconi anemia (FA) is a genetic disease characterized by congenital abnormalities, bone marrow failure, and susceptibility to leukemia and other cancers. FANCJ, one of 13 genes linked to FA, encodes a DNA helicase proposed to operate in homologous recombination repair and replicational stress response. The pathogenic FANCJ-A349P amino acid substitution resides immediately adjacent to a highly conserved cysteine of the iron-sulfur domain. Given the genetic linkage of the FANCJ-A349P allele to FA, we investigated the effect of this particular mutation on the biochemical and cellular functions of the FANCJ protein. Purified recombinant FANCJ-A349P protein had reduced iron and was defective in coupling adenosine triphosphate (ATP) hydrolysis and translocase activity to unwinding forked duplex or G-quadruplex DNA substrates or disrupting protein-DNA complexes. The FANCJ-A349P allele failed to rescue cisplatin or telomestatin sensitivity of a FA-J null cell line as detected by cell survival or γ-H2AX foci formation. Furthermore, expression of FANCJ-A349P in a wild-type background exerted a dominant-negative effect, indicating that the mutant protein interferes with normal DNA metabolism. The ability of FANCJ to use the energy from ATP hydrolysis to produce the force required to unwind DNA or destabilize protein bound to DNA is required for its role in DNA repair.


Mutation Research-reviews in Mutation Research | 2013

Disease-causing missense mutations in human DNA helicase disorders

Avvaru N. Suhasini; Robert M. Brosh

Helicases have important roles in nucleic acid metabolism, and their prominence is marked by the discovery of genetic disorders arising from disease-causing mutations. Missense mutations can yield unique insight to molecular functions and basis for disease pathology. XPB or XPD missense mutations lead to Xeroderma pigmentosum, Cockaynes syndrome, Trichothiodystrophy, or COFS syndrome, suggesting that DNA repair and transcription defects are responsible for clinical heterogeneity. Complex phenotypes are also observed for RECQL4 helicase mutations responsible for Rothmund-Thomson syndrome, Baller-Gerold syndrome, or RAPADILINO. Blooms syndrome causing missense mutations are found in the conserved helicase and RecQ C-terminal domain of BLM that interfere with helicase function. Although rare, patient-derived missense mutations in the exonuclease or helicase domain of Werner syndrome protein exist. Characterization of WRN separation-of-function mutants may provide insight to catalytic requirements for suppression of phenotypes associated with the premature aging disorder. Characterized FANCJ missense mutations associated with breast cancer or Fanconi anemia interfere with FANCJ helicase activity required for DNA repair and the replication stress response. For example, a FA patient-derived mutation in the FANCJ Iron-Sulfur domain was shown to uncouple its ATPase and translocase activity from DNA unwinding. Mutations in DDX11 (ChlR1) are responsible for Warsaw Breakage syndrome, a recently discovered autosomal recessive cohesinopathy. Ongoing and future studies will address clinically relevant helicase mutations and polymorphisms, including those that interfere with key protein interactions or exert dominant negative phenotypes (e.g., certain mutant alleles of Twinkle mitochondrial DNA helicase). Chemical rescue may be an approach to restore helicase activity in loss-of-function helicase disorders. Genetic and biochemical analyses of disease-causing missense mutations in human helicase disorders have led to new insights to the molecular defects underlying aberrant cellular and clinical phenotypes.


Trends in Genetics | 2012

Fanconi anemia and Bloom's syndrome crosstalk through FANCJ–BLM helicase interaction

Avvaru N. Suhasini; Robert M. Brosh

Fanconi anemia (FA) and Blooms syndrome (BS) are rare hereditary chromosomal instability disorders. FA displays bone marrow failure, acute myeloid leukemia, and head and neck cancers, whereas BS is characterized by growth retardation, immunodeficiency, and a wide spectrum of cancers. The BLM gene mutated in BS encodes a DNA helicase that functions in a protein complex to suppress sister-chromatid exchange. Of the 15 FA genetic complementation groups implicated in interstrand crosslink repair, FANCJ encodes a DNA helicase involved in recombinational repair and replication stress response. Based on evidence that BLM and FANCJ interact we suggest that crosstalk between BLM and FA pathways is more complex than previously thought. We propose testable models for how FANCJ and BLM coordinate to help cells deal with stalled replication forks or double-strand breaks (DSB). Understanding how BLM and FANCJ cooperate will help to elucidate an important pathway for maintaining genomic stability.


Journal of Biological Chemistry | 2006

Transfer RNA Cleavages by Onconase Reveal Unusual Cleavage Sites

Avvaru N. Suhasini; Ravi Sirdeshmukh

Onconase, a protein from amphibian eggs and a homologue of pancreatic ribonuclease (RNase) superfamily, is cytotoxic, exhibits antitumor and antiviral activity, and is in phase III clinical trials. It has been shown to predominantly target cellular tRNA on its entry into mammalian cells (Saxena, S. K., Sirdeshmukh, R., Ardelt, W., Mikulski, S. M., Shogen, K., and Youle, R. J. (2002) J. Biol. Chem. 277, 15142–15146). Cleavage site mapping using natural tRNA substrates, in vitro, revealed predominant cleavage sites at UG and GG residues. Cleavages at UG or the less intense cleavages at CG sites are consistent with the known base specificity of onconase. However, predominance of cleavages at selected G–G bonds is unusual for a homologue of pancreatic RNases. Interestingly, in at least three of the four tRNA substrates studied, the predominant cleavages mapped in the triplet UGG located in the context of the variable loop or the D-arm of the tRNA. The cleavage specificity of onconase observed by us thus indicates another special feature of this enzyme, which may be relevant to its cellular actions.


Molecular and Cellular Biology | 2013

Fanconi Anemia Group J Helicase and MRE11 Nuclease Interact to Facilitate the DNA Damage Response

Avvaru N. Suhasini; Joshua A. Sommers; Parameswary A. Muniandy; Yan Coulombe; Sharon B. Cantor; Jean-Yves Masson; Michael M. Seidman; Robert M. Brosh

ABSTRACT FANCJ mutations are linked to Fanconi anemia (FA) and increase breast cancer risk. FANCJ encodes a DNA helicase implicated in homologous recombination (HR) repair of double-strand breaks (DSBs) and interstrand cross-links (ICLs), but its mechanism of action is not well understood. Here we show with live-cell imaging that FANCJ recruitment to laser-induced DSBs but not psoralen-induced ICLs is dependent on nuclease-active MRE11. FANCJ interacts directly with MRE11 and inhibits its exonuclease activity in a specific manner, suggesting that FANCJ regulates the MRE11 nuclease to facilitate DSB processing and appropriate end resection. Cells deficient in FANCJ and MRE11 show increased ionizing radiation (IR) resistance, reduced numbers of γH2AX and RAD51 foci, and elevated numbers of DNA-dependent protein kinase catalytic subunit foci, suggesting that HR is compromised and the nonhomologous end-joining (NHEJ) pathway is elicited to help cells cope with IR-induced strand breaks. Interplay between FANCJ and MRE11 ensures a normal response to IR-induced DSBs, whereas FANCJ involvement in ICL repair is regulated by MLH1 and the FA pathway. Our findings are discussed in light of the current model for HR repair.


Advances in Experimental Medicine and Biology | 2013

DNA Helicases Associated with Genetic Instability, Cancer, and Aging

Avvaru N. Suhasini; Robert M. Brosh

DNA helicases have essential roles in the maintenance of genomic -stability. They have achieved even greater prominence with the discovery that mutations in human helicase genes are responsible for a variety of genetic disorders and are associated with tumorigenesis. A number of missense mutations in human helicase genes are linked to chromosomal instability diseases characterized by age-related disease or associated with cancer, providing incentive for the characterization of molecular defects underlying aberrant cellular phenotypes. In this chapter, we discuss some examples of clinically relevant missense mutations in various human DNA helicases, particularly those of the Iron-Sulfur cluster and RecQ families. Clinically relevant mutations in the XPD helicase can lead to Xeroderma pigmentosum, Cockaynes syndrome, Trichothiodystrophy, or COFS syndrome. FANCJ mutations are associated with Fanconi anemia or breast cancer. Mutations of the Fe-S helicase ChlR1 (DDX11) are linked to Warsaw Breakage syndrome. Mutations in the RecQ helicases BLM and WRN are linked to the cancer-prone disorder Blooms syndrome and premature aging condition Werner syndrome, respectively. RECQL4 mutations can lead to Rothmund-Thomson syndrome, Baller-Gerold syndrome, or RAPADILINO. Mutations in the Twinkle mitochondrial helicase are responsible for several neuromuscular degenerative disorders. We will discuss some insights gained from biochemical and genetic studies of helicase variants, and highlight some hot areas of helicase research based on recent developments.


Cell Cycle | 2010

Mechanistic and biological aspects of helicase action on damaged DNA.

Avvaru N. Suhasini; Robert M. Brosh

Helicases catalytically unwind structured nucleic acids in a nucleoside-triphosphate-dependent and directionally specific manner, and are essential for virtually all aspects of nucleic acid metabolism. ATPase-driven helicases which translocate along nucleic acids play a role in damage recognition or unwinding of a DNA tract containing the lesion. Although classical biochemical experiments provided evidence that bulky covalent adducts inhibit DNA unwinding catalyzed by certain DNA helicases in a strand-specific manner (i.e., block to DNA unwinding restricted to adduct residence in the strand the helicase translocates), recent studies suggest more complex arrangements that may depend on the helicase under study, its assembly in a protein complex, and the type of structural DNA perturbation. Moreover, base and sugar phosphate backbone modifications exert effects on DNA helicases that suggest specialized tracking mechanisms. As a component of the replication stress response, the single-stranded DNA binding protein Replication Protein A (RPA) may serve to enable eukaryotic DNA helicases to overcome certain base lesions. Helicases play important roles in DNA damage signaling which also involve their partnership with RPA. In this review, we will discuss our current understanding of mechanistic and biological aspects of helicase action on damaged DNA.


Journal of Biological Chemistry | 2012

DNA Repair and Replication Fork Helicases Are Differentially Affected by Alkyl Phosphotriester Lesion

Avvaru N. Suhasini; Joshua A. Sommers; Stephen Yu; Yuliang Wu; Ting Xu; Zvi Kelman; Daniel L. Kaplan; Robert M. Brosh

Background: Alkyl phosphotriester lesions are refractory to DNA repair. Results: An alkyl phosphotriester lesion inhibits SF2 DNA repair helicases but not replication fork helicases or SF1 helicase UvrD. Conclusion: Differences in the sensitivity of DNA helicases to an alkyl phosphotriester lesion suggest distinct unwinding mechanisms. Significance: Alkyl phosphotriester lesions exert unique effects on DNA helicases, likely to have consequences for DNA metabolism. DNA helicases are directly responsible for catalytically unwinding duplex DNA in an ATP-dependent and directionally specific manner and play essential roles in cellular nucleic acid metabolism. It has been conventionally thought that DNA helicases are inhibited by bulky covalent DNA adducts in a strand-specific manner. However, the effects of highly stable alkyl phosphotriester (PTE) lesions that are induced by chemical mutagens and refractory to DNA repair have not been previously studied for their effects on helicases. In this study, DNA repair and replication helicases were examined for unwinding a forked duplex DNA substrate harboring a single isopropyl PTE specifically positioned in the helicase-translocating or -nontranslocating strand within the double-stranded region. A comparison of SF2 helicases (RecQ, RECQ1, WRN, BLM, FANCJ, and ChlR1) with a SF1 DNA repair helicase (UvrD) and two replicative helicases (MCM and DnaB) demonstrates unique differences in the effect of the PTE on the DNA unwinding reactions catalyzed by these enzymes. All of the SF2 helicases tested were inhibited by the PTE lesion, whereas UvrD and the replication fork helicases were fully tolerant of the isopropyl backbone modification, irrespective of strand. Sequestration studies demonstrated that RECQ1 helicase was trapped by the PTE lesion only when it resided in the helicase-translocating strand. Our results are discussed in light of the current models for DNA unwinding by helicases that are likely to encounter sugar phosphate backbone damage during biological DNA transactions.

Collaboration


Dive into the Avvaru N. Suhasini's collaboration.

Top Co-Authors

Avatar

Robert M. Brosh

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Joshua A. Sommers

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Yuliang Wu

University of Saskatchewan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sharon B. Cantor

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar

Thomas Leonard

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Ravi Sirdeshmukh

Centre for Cellular and Molecular Biology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge