Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Axel Hausmann is active.

Publication


Featured researches published by Axel Hausmann.


Molecular Ecology Resources | 2009

Integration of DNA barcoding into an ongoing inventory of complex tropical biodiversity

Daniel H. Janzen; Winnie Hallwachs; Patrick Blandin; John M. Burns; Jean Marie Cadiou; Isidro A. Chacón; Tanya Dapkey; Andrew R. Deans; Marc E. Epstein; Bernardo Espinoza; John G. Franclemont; William A. Haber; Mehrdad Hajibabaei; Jason P. W. Hall; Paul D. N. Hebert; Ian D. Gauld; Donald J. Harvey; Axel Hausmann; Ian J. Kitching; Don Lafontaine; Jean Fran Çois Landry; Claude Lemaire; Jacqueline Y. Miller; James S. Miller; Lee D. Miller; Scott E. Miller; Jose Montero; Eugene Munroe; Suzanne Rab Green; Sujeevan Ratnasingham

Inventory of the caterpillars, their food plants and parasitoids began in 1978 for todays Area de Conservacion Guanacaste (ACG), in northwestern Costa Rica. This complex mosaic of 120 000 ha of conserved and regenerating dry, cloud and rain forest over 0–2000 m elevation contains at least 10 000 species of non‐leaf‐mining caterpillars used by more than 5000 species of parasitoids. Several hundred thousand specimens of ACG‐reared adult Lepidoptera and parasitoids have been intensively and extensively studied morphologically by many taxonomists, including most of the co‐authors. DNA barcoding — the use of a standardized short mitochondrial DNA sequence to identify specimens and flush out undisclosed species — was added to the taxonomic identification process in 2003. Barcoding has been found to be extremely accurate during the identification of about 100 000 specimens of about 3500 morphologically defined species of adult moths, butterflies, tachinid flies, and parasitoid wasps. Less than 1% of the species have such similar barcodes that a molecularly based taxonomic identification is impossible. No specimen with a full barcode was misidentified when its barcode was compared with the barcode library. Also as expected from early trials, barcoding a series from all morphologically defined species, and correlating the morphological, ecological and barcode traits, has revealed many hundreds of overlooked presumptive species. Many but not all of these cryptic species can now be distinguished by subtle morphological and/or ecological traits previously ascribed to ‘variation’ or thought to be insignificant for species‐level recognition. Adding DNA barcoding to the inventory has substantially improved the quality and depth of the inventory, and greatly multiplied the number of situations requiring further taxonomic work for resolution.


PLOS ONE | 2011

DNA barcoding the geometrid fauna of Bavaria (Lepidoptera): successes, surprises, and questions.

Axel Hausmann; Gerhard Haszprunar; Paul D. N. Hebert

Background The State of Bavaria is involved in a research program that will lead to the construction of a DNA barcode library for all animal species within its territorial boundaries. The present study provides a comprehensive DNA barcode library for the Geometridae, one of the most diverse of insect families. Methodology/Principal Findings This study reports DNA barcodes for 400 Bavarian geometrid species, 98 per cent of the known fauna, and approximately one per cent of all Bavarian animal species. Although 98.5% of these species possess diagnostic barcode sequences in Bavaria, records from neighbouring countries suggest that species-level resolution may be compromised in up to 3.5% of cases. All taxa which apparently share barcodes are discussed in detail. One case of modest divergence (1.4%) revealed a species overlooked by the current taxonomic system: Eupithecia goossensiata Mabille, 1869 stat.n. is raised from synonymy with Eupithecia absinthiata (Clerck, 1759) to species rank. Deep intraspecific sequence divergences (>2%) were detected in 20 traditionally recognized species. Conclusions/Significance The study emphasizes the effectiveness of DNA barcoding as a tool for monitoring biodiversity. Open access is provided to a data set that includes records for 1,395 geometrid specimens (331 species) from Bavaria, with 69 additional species from neighbouring regions. Taxa with deep intraspecific sequence divergences are undergoing more detailed analysis to ascertain if they represent cases of cryptic diversity.


Insect Systematics & Evolution | 2004

A procedure for combined genitalia dissection and DNA extraction in Lepidoptera

Andreas Segerer; Axel Hausmann; Michael Miller; Sven Erlacher; Sonja Knölke

Extraction of DNA from Lepidoptera is a destructive procedure and curators are often reluctant to provide museum specimens for molecular investigations. On the other hand, dissection of abdomens and genitalia is a standard procedure for description and identification of species and generally accepted even for type material. We present a method that combines the investigation of morphological traits in genitalia with the analysis of DNA sequence information by modifying the dissection protocol. Maceration of abdomens in potassium hydroxide is replaced by enzymatic digestion of soft tissue followed by DNA extraction. DNA extracted from abdomens is suitable for sequencing, as shown for the mitochondrial COI gene appropriate for species identification. Enzymatically treated abdomens proved to be sufficient for preservation of morphological traits. Recommendations are given for appropriate treatment of collected specimens and for routine use of enzymatic digestion.


PLOS ONE | 2012

Allopatry as a Gordian Knot for Taxonomists: Patterns of DNA Barcode Divergence in Arctic-Alpine Lepidoptera

Marko Mutanen; Axel Hausmann; Paul D. N. Hebert; Jean-François Landry; Jeremy R. de Waard; Peter Huemer

Many cold adapted species occur in both montane settings and in the subarctic. Their disjunct distributions create taxonomic complexity because there is no standardized method to establish whether their allopatric populations represent single or different species. This study employs DNA barcoding to gain new perspectives on the levels and patterns of sequence divergence among populations of 122 arctic-alpine species of Lepidoptera from the Alps, Fennoscandia and North America. It reveals intraspecific variability in the barcode region ranging from 0.00–10.08%. Eleven supposedly different species pairs or groups show close genetic similarity, suggesting possible synonymy in many cases. However, a total of 33 species show evidence of cryptic diversity as evidenced by the presence of lineages with over 2% maximum barcode divergence in Europe, in North America or between the two continents. Our study also reveals cases where taxonomic names have been used inconsistently between regions and exposes misidentifications. Overall, DNA barcodes have great potential to both increase taxonomic resolution and to make decisions concerning the taxonomic status of allopatric populations more objective.


PLOS ONE | 2011

Comprehensive Molecular Sampling Yields a Robust Phylogeny for Geometrid Moths (Lepidoptera: Geometridae)

Pasi Sihvonen; Marko Mutanen; Lauri Kaila; Gunnar Brehm; Axel Hausmann; Hermann S. Staude

Background The moth family Geometridae (inchworms or loopers), with approximately 23 000 described species, is the second most diverse family of the Lepidoptera. Apart from a few recent attempts based on morphology and molecular studies, the phylogeny of these moths has remained largely uninvestigated. Methodology/Principal Findings We performed a rigorous and extensive molecular analysis of eight genes to examine the geometrid affinities in a global context, including a search for its potential sister-taxa. Our maximum likelihood analyses included 164 taxa distributed worldwide, of which 150 belong to the Geometridae. The selected taxa represent all previously recognized subfamilies and nearly 90% of recognized tribes, and originate from all over world. We found the Geometridae to be monophyletic with the Sematuridae+Epicopeiidae clade potentially being its sister-taxon. We found all previously recognized subfamilies to be monophyletic, with a few taxa misplaced, except the Oenochrominae+Desmobathrinae complex that is a polyphyletic assemblage of taxa and the Orthostixinae, which was positioned within the Ennominae. The Sterrhinae and Larentiinae were found to be sister to the remaining taxa, followed by Archiearinae, the polyphyletic assemblage of Oenochrominae+Desmobathrinae moths, Geometrinae and Ennominae. Conclusions/Significance Our study provides the first comprehensive phylogeny of the Geometridae in a global context. Our results generally agree with the other, more restricted studies, suggesting that the general phylogenetic patterns of the Geometridae are now well-established. Generally the subfamilies, many tribes, and assemblages of tribes were well supported but their interrelationships were often weakly supported by our data. The Eumeleini were particularly difficult to place in the current system, and several tribes were found to be para- or polyphyletic.


Systematic Biology | 2016

Species-Level Para- and Polyphyly in DNA Barcode Gene Trees: Strong Operational Bias in European Lepidoptera

Marko Mutanen; Sami M. Kivelä; Rutger A. Vos; Camiel Doorenweerd; Sujeevan Ratnasingham; Axel Hausmann; Peter Huemer; Vlad Dincă; Erik J. van Nieukerken; Carlos Lopez-Vaamonde; Roger Vila; Leif Aarvik; Thibaud Decaëns; Konstantin A. Efetov; Paul D. N. Hebert; Arild Johnsen; Ole Karsholt; Mikko Pentinsaari; Rodolphe Rougerie; Andreas Segerer; Gerhard M. Tarmann; Reza Zahiri; H. Charles J. Godfray

The proliferation of DNA data is revolutionizing all fields of systematic research. DNA barcode sequences, now available for millions of specimens and several hundred thousand species, are increasingly used in algorithmic species delimitations. This is complicated by occasional incongruences between species and gene genealogies, as indicated by situations where conspecific individuals do not form a monophyletic cluster in a gene tree. In two previous reviews, non-monophyly has been reported as being common in mitochondrial DNA gene trees. We developed a novel web service “Monophylizer” to detect non-monophyly in phylogenetic trees and used it to ascertain the incidence of species non-monophyly in COI (a.k.a. cox1) barcode sequence data from 4977 species and 41,583 specimens of European Lepidoptera, the largest data set of DNA barcodes analyzed from this regard. Particular attention was paid to accurate species identification to ensure data integrity. We investigated the effects of tree-building method, sampling effort, and other methodological issues, all of which can influence estimates of non-monophyly. We found a 12% incidence of non-monophyly, a value significantly lower than that observed in previous studies. Neighbor joining (NJ) and maximum likelihood (ML) methods yielded almost equal numbers of non-monophyletic species, but 24.1% of these cases of non-monophyly were only found by one of these methods. Non-monophyletic species tend to show either low genetic distances to their nearest neighbors or exceptionally high levels of intraspecific variability. Cases of polyphyly in COI trees arising as a result of deep intraspecific divergence are negligible, as the detected cases reflected misidentifications or methodological errors. Taking into consideration variation in sampling effort, we estimate that the true incidence of non-monophyly is ∼23%, but with operational factors still being included. Within the operational factors, we separately assessed the frequency of taxonomic limitations (presence of overlooked cryptic and oversplit species) and identification uncertainties. We observed that operational factors are potentially present in more than half (58.6%) of the detected cases of non-monophyly. Furthermore, we observed that in about 20% of non-monophyletic species and entangled species, the lineages involved are either allopatric or parapatric—conditions where species delimitation is inherently subjective and particularly dependent on the species concept that has been adopted. These observations suggest that species-level non-monophyly in COI gene trees is less common than previously supposed, with many cases reflecting misidentifications, the subjectivity of species delimitation or other operational factors.


Philosophical Transactions of the Royal Society B | 2016

Advancing taxonomy and bioinventories with DNA barcodes.

Scott E. Miller; Axel Hausmann; Winnie Hallwachs; Daniel H. Janzen

We use three examples—field and ecology-based inventories in Costa Rica and Papua New Guinea and a museum and taxonomic-based inventory of the moth family Geometridae—to demonstrate the use of DNA barcoding (a short sequence of the mitochondrial COI gene) in biodiversity inventories, from facilitating workflows of identification of freshly collected specimens from the field, to describing the overall diversity of megadiverse taxa from museum collections, and most importantly linking the fresh specimens, the general museum collections and historic type specimens. The process also flushes out unexpected sibling species hiding under long-applied scientific names, thereby clarifying and parsing previously mixed collateral data. The Barcode of Life Database has matured to an essential interactive platform for the multi-authored and multi-process collaboration. The BIN system of creating and tracking DNA sequence-based clusters as proxies for species has become a powerful way around some parts of the ‘taxonomic impediment’, especially in entomology, by providing fast but testable and tractable species hypotheses, tools for visualizing the distribution of those in time and space and an interim naming system for communication. This article is part of the themed issue ‘From DNA barcodes to biomes’.


PLOS ONE | 2016

Species Identification in Malaise Trap Samples by DNA Barcoding Based on NGS Technologies and a Scoring Matrix

Jérôme Morinière; Bruno Cancian de Araujo; Athena Lam; Axel Hausmann; Michael Balke; Stefan Schmidt; Lars Hendrich; Dieter Doczkal; Berthold Fartmann; Samuel Arvidsson; Gerhard Haszprunar

The German Barcoding initiatives BFB and GBOL have generated a reference library of more than 16,000 metazoan species, which is now ready for applications concerning next generation molecular biodiversity assessments. To streamline the barcoding process, we have developed a meta-barcoding pipeline: We pre-sorted a single malaise trap sample (obtained during one week in August 2014, southern Germany) into 12 arthropod orders and extracted DNA from pooled individuals of each order separately, in order to facilitate DNA extraction and avoid time consuming single specimen selection. Aliquots of each ordinal-level DNA extract were combined to roughly simulate a DNA extract from a non-sorted malaise sample. Each DNA extract was amplified using four primer sets targeting the CO1-5’ fragment. The resulting PCR products (150-400bp) were sequenced separately on an Illumina Mi-SEQ platform, resulting in 1.5 million sequences and 5,500 clusters (coverage ≥10; CD-HIT-EST, 98%). Using a total of 120,000 DNA barcodes of identified, Central European Hymenoptera, Coleoptera, Diptera, and Lepidoptera downloaded from BOLD we established a reference sequence database for a local CUSTOM BLAST. This allowed us to identify 529 Barcode Index Numbers (BINs) from our sequence clusters derived from pooled Malaise trap samples. We introduce a scoring matrix based on the sequence match percentages of each amplicon in order to gain plausibility for each detected BIN, leading to 390 high score BINs in the sorted samples; whereas 268 of these high score BINs (69%) could be identified in the combined sample. The results indicate that a time consuming presorting process will yield approximately 30% more high score BINs compared to the non-sorted sample in our case. These promising results indicate that a fast, efficient and reliable analysis of next generation data from malaise trap samples can be achieved using this pipeline.


PLOS ONE | 2014

Australian Sphingidae – DNA Barcodes Challenge Current Species Boundaries and Distributions

Rodolphe Rougerie; Ian J. Kitching; Jean Haxaire; Scott E. Miller; Axel Hausmann; Paul D. N. Hebert

Main Objective We examine the extent of taxonomic and biogeographical uncertainty in a well-studied group of Australian Lepidoptera, the hawkmoths (Sphingidae). Methods We analysed the diversity of Australian sphingids through the comparative analysis of their DNA barcodes, supplemented by morphological re-examinations and sequence information from a nuclear marker in selected cases. The results from the analysis of Australian sphingids were placed in a broader context by including conspecifics and closely related taxa from outside Australia to test taxonomic boundaries. Results Our results led to the discovery of six new species in Australia, one case of erroneously synonymized species, and three cases of synonymy. As a result, we establish the occurrence of 75 species of hawkmoths on the continent. The analysis of records from outside Australia also challenges the validity of current taxonomic boundaries in as many as 18 species, including Agrius convolvuli (Linnaeus, 1758), a common species that has gained adoption as a model system. Our work has revealed a higher level of endemism than previously recognized. Most (90%) Australian sphingids are endemic to the continent (45%) or to Australia, the Pacific Islands and the Papuan and Wallacean regions (45%). Only seven species (10%) have ranges that extend beyond this major biogeographical boundary toward SE Asia and other regions of the Old World. Main Conclusions This study has established that overlooked cryptic diversity and inaccurate species delineation produced significant misconceptions concerning diversity and distribution patterns in a group of insects that is considered well known taxonomically. Because DNA barcoding represents a straightforward way to test taxonomic boundaries, its implementation can improve the accuracy of primary diversity data in biogeography and conservation studies.


Philosophical Transactions of the Royal Society B | 2016

The Trichoptera barcode initiative: a strategy for generating a species-level Tree of Life.

Xin Zhou; Paul B. Frandsen; Ralph W. Holzenthal; Clare Rose Beet; Kristi R. Bennett; Roger J. Blahnik; Núria Bonada; David Cartwright; Suvdtsetseg Chuluunbat; Graeme V. Cocks; Gemma E. Collins; Jeremy R. deWaard; John Dean; Oliver S. Flint; Axel Hausmann; Lars Hendrich; Monika Hess; Ian D. Hogg; Boris C. Kondratieff; Hans Malicky; Megan A. Milton; Jérôme Morinière; John C. Morse; François Ngera Mwangi; Steffen U. Pauls; María Razo Gonzalez; Aki Rinne; Jason L. Robinson; Juha Salokannel; Michael Shackleton

DNA barcoding was intended as a means to provide species-level identifications through associating DNA sequences from unknown specimens to those from curated reference specimens. Although barcodes were not designed for phylogenetics, they can be beneficial to the completion of the Tree of Life. The barcode database for Trichoptera is relatively comprehensive, with data from every family, approximately two-thirds of the genera, and one-third of the described species. Most Trichoptera, as with most of lifes species, have never been subjected to any formal phylogenetic analysis. Here, we present a phylogeny with over 16 000 unique haplotypes as a working hypothesis that can be updated as our estimates improve. We suggest a strategy of implementing constrained tree searches, which allow larger datasets to dictate the backbone phylogeny, while the barcode data fill out the tips of the tree. We also discuss how this phylogeny could be used to focus taxonomic attention on ambiguous species boundaries and hidden biodiversity. We suggest that systematists continue to differentiate between ‘Barcode Index Numbers’ (BINs) and ‘species’ that have been formally described. Each has utility, but they are not synonyms. We highlight examples of integrative taxonomy, using both barcodes and morphology for species description. This article is part of the themed issue ‘From DNA barcodes to biomes’.

Collaboration


Dive into the Axel Hausmann's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Scott E. Miller

National Museum of Natural History

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lars Hendrich

Free University of Berlin

View shared research outputs
Top Co-Authors

Avatar

Jaan Viidalepp

Estonian University of Life Sciences

View shared research outputs
Top Co-Authors

Avatar

Daniel H. Janzen

University of Pennsylvania

View shared research outputs
Researchain Logo
Decentralizing Knowledge