Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Axel Hochkirch is active.

Publication


Featured researches published by Axel Hochkirch.


The Quarterly Review of Biology | 2008

Reproductive interference between animal species

Julia Gröning; Axel Hochkirch

Although sexual interactions between species (reproductive interference) have been reported from a wide range of animal taxa, their potential for determining species coexistence is often disregarded. Here, we review evidence from laboratory and field studies illustrating that heterospecific sexual interactions are frequently associated with fitness loss and can have severe ecological and evolutionary consequences. We define reproductive interference as any kind of interspecific interaction during the process of mate acquisition that adversely affects the fitness of at least one of the species involved and that is caused by incomplete species recognition. We distinguish seven types of reproductive interference: signal jamming, heterospecific rivalry, misdirected courtship, heterospecific mating attempts, erroneous female choice, heterospecific mating, and hybridization. We then discuss the sex-specific costs of these types and highlight two typical features of reproductive interference: density-dependence and asymmetry. Similar to competition, reproductive interference can lead to displacement of one species (sexual exclusion), spatial, temporal, or habitat segregation, changes in life history parameters, and reproductive character displacement. In many cases, patterns of coexistence might be shaped by reproductive interference rather than by resource competition, as the presence of a few heterospecifics might substantially decrease reproductive success. Therefore, interspecific sexual interactions should receive more attention in ecological research. Reproductive interference has mainly been discussed in the context of invasive species or hybrid zones, whereas its influence on naturally-occurring sympatric species pairs has rarely been addressed. To improve our knowledge of the ecological significance of reproductive interference, findings from laboratory experiments should be validated in the field. Future studies should also focus on ecological mechanisms, such as temporal, spatial, or habitat partitioning, that might enable sexually interacting species to coexist. Reproductive interference also has implications for the management of endangered species, which can be threatened by sexual interactions with invasive or common species. Studies of reproductive interference might even provide new insights for biological pest control.


Molecular Ecology Resources | 2010

Permanent Genetic Resources added to Molecular Ecology Resources Database 1 October 2009–30 November 2009

Aluana Gonçalves Abreu; Aitor Albaina; Tilman J. Alpermann; Vanessa E. Apkenas; S. Bankhead-Dronnet; Sara Bergek; Michael L. Berumen; Chang-Hung Cho; Jean Clobert; Aurélie Coulon; D. De Feraudy; Andone Estonba; Thomas Hankeln; Axel Hochkirch; Tsai-Wen Hsu; Tsurng-Juhn Huang; Xabier Irigoien; M. Iriondo; Kathleen M. Kay; Tim Kinitz; Linda Kothera; Maxime Le Hénanff; F. Lieutier; Olivier Lourdais; Camila M. T. Macrini; C. Manzano; C. Martin; Veronica R. F. Morris; Gerrit B. Nanninga; M. A. Pardo

This article documents the addition of 411 microsatellite marker loci and 15 pairs of Single Nucleotide Polymorphism (SNP) sequencing primers to the Molecular Ecology Resources Database. Loci were developed for the following species: Acanthopagrus schlegeli, Anopheles lesteri, Aspergillus clavatus, Aspergillus flavus, Aspergillus fumigatus, Aspergillus oryzae, Aspergillus terreus, Branchiostoma japonicum, Branchiostoma belcheri, Colias behrii, Coryphopterus personatus, Cynogolssus semilaevis, Cynoglossus semilaevis, Dendrobium officinale, Dendrobium officinale, Dysoxylum malabaricum, Metrioptera roeselii, Myrmeciza exsul, Ochotona thibetana, Neosartorya fischeri, Nothofagus pumilio, Onychodactylus fischeri, Phoenicopterus roseus, Salvia officinalis L., Scylla paramamosain, Silene latifo, Sula sula, and Vulpes vulpes. These loci were cross‐tested on the following species: Aspergillus giganteus, Colias pelidne, Colias interior, Colias meadii, Colias eurytheme, Coryphopterus lipernes, Coryphopterus glaucofrenum, Coryphopterus eidolon, Gnatholepis thompsoni, Elacatinus evelynae, Dendrobium loddigesii Dendrobium devonianum, Dysoxylum binectariferum, Nothofagus antarctica, Nothofagus dombeyii, Nothofagus nervosa, Nothofagus obliqua, Sula nebouxii, and Sula variegata. This article also documents the addition of 39 sequencing primer pairs and 15 allele specific primers or probes for Paralithodes camtschaticus.


Biodiversity and Conservation | 2011

Ex situ conservation genetics: a review of molecular studies on the genetic consequences of captive breeding programmes for endangered animal species

Kathrin A. Witzenberger; Axel Hochkirch

Captive breeding has become an important tool in species conservation programmes. Current management strategies for ex situ populations are based on theoretical models, which have mainly been tested in model species or assessed using studbook data. During recent years an increasing number of molecular genetic studies have been published on captive populations of several endangered species. However, a comprehensive analysis of these studies is still outstanding. Here, we present a review of the published literature on ex situ conservation genetics with a focus on molecular studies. We analysed 188 publications which either presented empirical studies using molecular markers (105), studbook analyses (26), theoretical work (38), or tested the genetic effects of management strategies using model species (19). The results show that inbreeding can be minimized by a thorough management of captive populations. There seems to be a minimum number of founders (15) and a minimum size of a captive population (100) necessary in order to minimize a loss of genetic diversity. Optimally, the founders should be unrelated and new founders should be integrated into the captive population successively. We recommend that genetic analyses should generally precede and accompany ex situ conservation projects in order to avoid inbreeding and outbreeding depression. Furthermore, many of the published studies do not provide all the relevant parameters (founder size, captive population size, Ho, He, inbreeding coefficients). We, therefore, propose that a general standard for the presentation of genetic studies should be established, which would allow integration of the data into a global database.


Ecology Letters | 2015

Sexual selection drives asymmetric introgression in wall lizards

Geoffrey M. While; Sozos Michaelides; Robert J. P. Heathcote; Hannah E. A. MacGregor; Natalia Zajac; Joscha Beninde; Pau Carazo; Guillem Pérez i de Lanuza; Roberto Sacchi; Marco A.L. Zuffi; Terézia Horváthová; Belén Fresnillo; Ulrich Schulte; Michael Veith; Axel Hochkirch; Tobias Uller

Hybridisation is increasingly recognised as an important cause of diversification and adaptation. Here, we show how divergence in male secondary sexual characters between two lineages of the common wall lizard (Podarcis muralis) gives rise to strong asymmetries in male competitive ability and mating success, resulting in asymmetric hybridisation upon secondary contact. Combined with no negative effects of hybridisation on survival or reproductive characters in F1-hybrids, these results suggest that introgression should be asymmetric, resulting in the displacement of sexual characters of the sub-dominant lineage. This prediction was confirmed in two types of secondary contact, across a natural contact zone and in two introduced populations. Our study illustrates how divergence in sexually selected traits via male competition can determine the direction and extent of introgression, contributing to geographic patterns of genetic and phenotypic diversity.


Environmental Conservation | 2007

Effects of prescribed burning and wildfires on Orthoptera in Central European peat bogs

Axel Hochkirch; Frauke Adorf

SUMMARY Fire has become a frequent tool in nature conservation and hazard reduction, but there is still dispute about the responses of many taxa, especially concerning invertebrate populations. While the effects of fire on plants and animals have been examined intensively in prairies, savannahs and coniferous forests, wetlands have rarely been considered in this context, yet wetland ecosystems do experience periodic fires. This study examines the effects of prescribed burning and wildfires on Orthoptera in four Central European peat bogs.Allspeciespersistedontheburnedplotsandnone experienced a massive decline in abundance compared to unburned treatments. Generally, differences in speciescompositionandabundanceweremoredistinct between the bogs than between the fire treatments or fire season. One threatened species, Omocestus rufipes, occurred more often in burned than in unburned samples. The abundances of Orthoptera species in the transition zone between burned and unburned plots were either uniform or step-like rather than gradual in nature, conflicting with a hypothesis of post-fire recolonization from unburned plots. This pattern supported by non-metric multidimensional scaling suggests that the vegetation structure plays a substantial role in habitat choice of these insects. Small-scale fires between February and May do not seem to represent a threat to Orthoptera species. However, in the longer term, peat bog restoration may be affected by negative vegetation responses.


Journal of Orthoptera Research | 2008

Sexual size dimorphism in Orthoptera (sens. str.) — a review

Axel Hockkirch; Julia Gröning; Axel Hochkirch

Abstract Sexual size dimorphism (SSD) is a common phenomenon in animal taxa. While males are the larger sex in many birds and mammals, female-biased SSD predominates among insects, including Orthoptera. We analyzed size differences of 1503 Orthoptera species, suggesting that SSD is rather uniform in Ensifera, with the females being on average 9% larger than the males (ranging from −20 to +40%). In contrast, SSD is usually much stronger in Caelifera (37%) and also more variable (ranging from −20 to +140%). Caelifera with larger females exhibit stronger size differences than smaller species, whereas in Ensifera SSD decreases with male body size, but is not related to female size. Sexual size differences in Orthoptera are usually associated with a higher number of nymphal instars in females, leading to an earlier emergence of adult males (protandry). Both growth rates and the number of instars seem to be affected by genetic and environmental cues. Two major hypotheses have been proposed to explain the ultimate causes for SSD: the intersexual competition hypothesis and the differential equilibrium hypothesis. The first suggests that sexual dimorphism is a mechanism to reduce intraspecific competition, enabling the sexes to specialize on different food items. The differential equilibrium hypothesis proposes that the different body sizes represent sex-specific fitness optima, which are caused by their specific life-history strategies. Females may maximize their reproductive success by increasing the number (or size) of eggs (fecundity selection), whereas males may maximize their reproduction by being more mobile and fertilizing many females in a short period of time. These fundamental differences in the life-history strategies of the sexes may also lead to sexual selection, which has sometimes been referred to as an additional hypothesis. There is still a need for more empirical research on the ultimate causes for SSD. At present, there is much more support for the differential equilibrium hypothesis, but the intersexual competition hypothesis has rarely been tested. We propose some experimental approaches to test both hypotheses in micro- and macroevolutionary contexts.


Molecular Ecology | 2012

Rapid genetic assimilation of native wall lizard populations (Podarcis muralis) through extensive hybridization with introduced lineages

Ulrich Schulte; Michael Veith; Axel Hochkirch

The Common Wall Lizard (Podarcis muralis) has established more than 150 non‐native populations in Central Europe, stemming from eight geographically distinct evolutionary lineages. While the majority of these introduced populations are found outside the native range, some of these populations also exist at the northern range margin in southwestern Germany. To (i) infer the level of hybridization in contact zones of alien and native lineages; and (ii) compare the genetic diversity among purebred introduced, native and hybrid populations, we used a combination of maternally inherited markers (mtDNA: cytb) and Mendelian markers (microsatellites). Our results suggest a rapid genetic assimilation of native populations by strong introgression from introduced lineages. Discordant patterns of mtDNA and nDNA variation within hybrid populations may be explained by directed mate choice of females towards males of alien lineages. In contrast to previous studies, we found a nonlinear relationship between genetic diversity and admixture level. The genetic diversity of hybrid populations was substantially higher than in introduced and native populations belonging to a single lineage, but rapidly reaching a plateau of high genetic diversity at an admixture level of two. However, even introduced populations with low founder sizes and from one source population retained moderate levels of genetic diversity and no evidence for a genetic bottleneck was found. The extent of introgression and the dominance of alien haplotypes in mixed populations indicate that introductions of non‐native lineages represent a serious threat to the genetic integrity of native populations due to the rapid creation of hybrid swarms.


Biodiversity and Conservation | 2013

The effects of grassland management and aspect on Orthoptera diversity and abundance: site conditions are as important as management

Naja Weiss; Herbert Zucchi; Axel Hochkirch

Calcareous grasslands represent local hotspots of biodiversity in large parts of Central and Northern Europe. They support a great number of rare species which are adapted to these xerothermic habitats. Due to massive changes in land use, calcareous grasslands have become a rare habitat type and their conservation has been given a high priority in the habitats directive of the European Union. It is well known that grassland management may affect biodiversity substantially. However, the quality of calcareous grasslands is also influenced by abiotic conditions, such as aspect (i.e. sun exposure), which affects the local mesoclimate. We studied the combined effects of aspect and grassland management on Orthoptera diversity on 16 sites in Central Germany, in an unbalanced crossed design with three factors: aspect, management type and management intensity. For both response variables (diversity and abundance) we obtained a similar pattern. South-facing pastures maintained a greater diversity than north-facing pastures, but both had a greater diversity than extensively used meadows. Intensively used meadows maintained the lowest diversity and abundances. A multivariate analysis revealed that the abundance of rare Orthoptera species correlated with bare ground cover and forb cover, both of which were greatest at south-facing pastures. Our results suggest that grazing is a more suitable management for maintaining a high biodiversity in calcareous grasslands than mowing. Moreover, the mesoclimate (in this studied measured by its surrogate: aspect) is a crucial factor determining species richness and needs to be considered in reserve planning.


Ecological Research | 2007

Habitat preferences of an endangered insect species, Cepero’s ground-hopper (Tetrix ceperoi)

Julia Gröning; Sascha Krause; Axel Hochkirch

Preventing the global decline in biodiversity is a major task for conservation biologists. Although habitat loss has been identified as a key factor driving extinction processes, our knowledge on the habitat requirements of many endangered species, particularly invertebrates, is still sparse. We present a feasible method to study the microhabitat preferences of insect species. In Central Europe, the endangered Cepero’s ground-hopper, Tetrix ceperoi, is believed to have its only remaining natural habitats in dune slacks of the Wadden Sea Islands. Our results suggest that this species performs an active habitat choice of damp, bare patches with high temperatures. While ponds and fens in dune slacks provide large areas of damp bare ground and algal mats, grasslands, degraded dune slacks and the transitional zone between salt marsh and dunes are less suited as habitats. The major threat for T. ceperoi is found in the succession of its pioneer habitats due to the reduced natural dynamics. In industrialized countries, pioneer habitats and species are threatened substantially by coastal protection and floodplain regulation. This is only compensated in part by anthropogenic creation of secondary habitats, such as different kinds of pits or coal heaps. Nevertheless, there is a strong need for restoration of dynamic habitats by floodplain revitalization and dune slack restoration.


Evolution & Development | 2008

Phenotypic plasticity in insects: the effects of substrate color on the coloration of two ground-hopper species

Axel Hochkirch; Jana Deppermann; Julia Gröning

SUMMARY The question of how phenotypic variation is maintained within populations has long been a central issue in evolutionary biology. Most of these studies focused on the maintenance of genetic variability, but the phenotype of organisms may also be influenced by environmental cues experienced during ontogeny. Color polymorphism has received particular attention in evolutionary studies as it has strong fitness consequences. However, if body coloration is influenced by the environment, any conclusions on evolutionary consequences of fitness trade‐offs can be misleading. Here we present data from a laboratory experiment on the influence of substrate color on three aspects of the coloration of two ground‐hopper species, Tetrix subulata and Tetrix ceperoi. We reared hatchlings either on dark or on light substrates, using a split‐brood design. Although the type of pronotal pattern changed mainly in response to nymphal development, the basic color was strongly influenced by the substrate color. In both species, black and dark olive color morphs were found more frequently on the dark substrate, whereas the gray color morph dominated on the light substrate. These findings have considerable implications for our understanding of color morph evolution as they show that color polymorphism may not only be maintained by natural selection acting on discrete color morphs, but also by phenotypic plasticity, which enables organisms to adjust to the environmental conditions experienced during ontogeny. This facultative morphology is opposing to the prevailing view of color morph adaptation, which assumes a purely genetic determination and co‐evolution of discrete color morphs with life history traits.

Collaboration


Dive into the Axel Hochkirch's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rui Nunes

University of the Azores

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Julia Gröning

University of Osnabrück

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniela Matenaar

American Museum of Natural History

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge