Axel Lauer
German Aerospace Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Axel Lauer.
Journal of Geophysical Research | 2005
Veronika Eyring; H. W. Köhler; J. van Aardenne; Axel Lauer
[1] Seagoing ships emit exhaust gases and particles into the marine boundary layer and significantly contribute to the total budget of anthropogenic emissions. We present an emission inventory for international shipping for the past five decades to be used in global modeling studies with detailed tropospheric chemistry. The inventory is a bottom-up analysis using fuel consumption and fleet numbers for the total civilian and military fleet including auxiliary engines at the end of 2001. Trend estimates for fuel mass, CO 2 , NO x , and other emissions for the time between 1950 and 2001 have been calculated using ship number statistics and average engine statistics. Our estimate for total fuel consumption and global emissions for the year 2001 is similar to previous activity-based studies. However, compared to earlier studies, a detailed speciation of nonmethane hydrocarbons (NMHCs) and particulate matter is given, and carbon monoxide emissions are calculated explicitly. Our results suggest a fuel consumption of approximately 280 million metric tons (Mt) for the year 2001 and 64.5 Mt in 1950. This corresponds to 187 (5.4) Tg CO 2 (NO x ) in 1950, and 813 (21.4) Tg CO 2 (NO x ) in 2001. From 1970 to 2001 the world-merchant fleet increased rapidly in terms of ship numbers, with a corresponding increase in total fuel consumption. The fuel consumption estimates are compared against historical marine bunker fuel statistics, and our emission estimates are related to emission budgets of other transport modes. Global ship emissions are distributed geographically according to global vessel traffic densities of the AMVER (Automated Mutual-assistance Vessel Rescue system) data set for the year 2000. This work also sets the basis to develop future emission scenarios based on average-fleet emission indices in part 2 of this study.
Journal of Climate | 2013
Axel Lauer; Kevin Hamilton
AbstractClouds are a key component of the climate system affecting radiative balances and the hydrological cycle. Previous studies from the Coupled Model Intercomparison Project phase 3 (CMIP3) showed quite large biases in the simulated cloud climatology affecting all GCMs as well as a remarkable degree of variation among the models that represented the state of the art circa 2005. Here the progress that has been made in recent years is measured by comparing mean cloud properties, interannual variability, and the climatological seasonal cycle from the CMIP5 models with satellite observations and with results from comparable CMIP3 experiments. The focus is on three climate-relevant cloud parameters: cloud amount, liquid water path, and cloud radiative forcing. The comparison shows that intermodel differences are still large in the Coupled Model Intercomparison Project phase 5 (CMIP5) simulations, and reveals some small improvements of particular cloud properties in some regions in the CMIP5 ensemble over C...
Chemical Reviews | 2015
Erika von Schneidemesser; Paul S. Monks; J. D. Allan; Lori Bruhwiler; Piers M. Forster; D. Fowler; Axel Lauer; W. T. Morgan; Pauli Paasonen; Mattia Righi; Katerina Sindelarova; Mark A. Sutton
Climate change and air pollution are critical environmental issues both in the here and now and for the coming decades. A recent OECD report found that unless action is taken, air pollution will be the largest environmental cause of premature death worldwide by 2050. Already, air pollution levels in Asia are far above acceptable levels for human health, and even in Europe, the vast majority of the urban population was exposed to air pollution concentrations exceeding the EU daily limit values, and especially the stricter WHO air quality guidelines in the past decade. The most recent synthesis of climate change research as presented in the fifth IPCC Assessment Report (AR5) states that the warming of the climate system is unequivocal, recognizing the dominant cause as human influence, and providing evidence for a 43% higher total (from 1750 to the present) anthropogenic radiative forcing (RF) than was reported in 2005 from the previous assessment report.
Journal of Climate | 2013
Axel Lauer; Chunxi Zhang; Oliver Elison-Timm; Yuqing Wang; Kevin Hamilton
AbstractThe Weather Research and Forecasting (WRF) model has been configured as a regional climate model for the Hawaii region (HRCM) to assess the uncertainties associated with the pseudo–global warming (PGW) downscaling method using different warming increments from phase 5 of the Coupled Model Intercomparison Project (CMIP5) model experiments. Results from 15-km downscaling experiments using warming increments from 10 individual CMIP5 models for the two warming scenarios representative concentration pathway 4.5 (RCP4.5) and 8.5 (RCP8.5) are compared with experiments using multimodel mean warming increments. The results show that changes in 2-m temperatures, 10-m wind speed, rainfall, water vapor path, and trade wind inversion vary significantly among the individual model experiments. This translates into large uncertainties when picking one particular CMIP5 model to provide the warming increments for dynamical downscaling in the Hawaii region. The simulations also show that, despite the large interexpe...
Journal of Climate | 2010
Axel Lauer; Kevin Hamilton; Yuqing Wang; Vaughan T. J. Phillips; Ralf Bennartz
Abstract Cloud simulations and cloud–climate feedbacks in the tropical and subtropical eastern Pacific region in 16 state-of-the-art coupled global climate models (GCMs) and in the International Pacific Research Center (IPRC) Regional Atmospheric Model (iRAM) are examined. The authors find that the simulation of the present-day mean cloud climatology for this region in the GCMs is very poor and that the cloud–climate feedbacks vary widely among the GCMs. By contrast, iRAM simulates mean clouds and interannual cloud variations that are quite similar to those observed in this region. The model also simulates well the observed relationship between lower-tropospheric stability (LTS) and low-level cloud amount. To investigate cloud–climate feedbacks in iRAM, several global warming scenarios were run with boundary conditions appropriate for late twenty-first-century conditions. All the global warming cases simulated with iRAM show a distinct reduction in low-level cloud amount, particularly in the stratocumulus...
Monthly Weather Review | 2012
Chunxi Zhang; Yuqing Wang; Axel Lauer; Kevin Hamilton
AbstractThe Weather Research and Forecasting (WRF) model V3.3 has been configured for the Hawaiian Islands as a regional climate model for the region (HRCM). This paper documents the model configuration and presents a preliminary evaluation based on a continuous 1-yr simulation forced by observed boundary conditions with 3-km horizontal grid spacing in the inner nested domain. The simulated vertical structure of the temperature and humidity are compared with twice-daily radiosonde observations at two stations. Generally the trade wind inversion (TWI) height and occurrence days are well represented. The simulation over the islands is compared with observations from nine surface climatological stations and a dense network of precipitation stations. The model simulation has generally small biases in the simulated surface temperature, relative humidity, and wind speed. The model realistically simulated the magnitude and geographical distribution of the mean rainfall over the Hawaiian Islands. In addition, the...
Environmental Science & Technology | 2011
Mattia Righi; Carolin Klinger; Veronika Eyring; Johannes Hendricks; Axel Lauer; Andreas Petzold
Aerosol emissions from international shipping are recognized to have a large impact on the Earths radiation budget, directly by scattering and absorbing solar radiation and indirectly by altering cloud properties. New regulations have recently been approved by the International Maritime Organization (IMO) aiming at progressive reductions of the maximum sulfur content allowed in marine fuels from current 4.5% by mass down to 0.5% in 2020, with more restrictive limits already applied in some coastal regions. In this context, we use a global bottom-up algorithm to calculate geographically resolved emission inventories of gaseous (NO(x), CO, SO(2)) and aerosol (black carbon, organic matter, sulfate) species for different kinds of low-sulfur fuels in shipping. We apply these inventories to study the resulting changes in radiative forcing, attributed to particles from shipping, with the global aerosol-climate model EMAC-MADE. The emission factors for the different fuels are based on measurements at a test bed of a large diesel engine. We consider both fossil fuel (marine gas oil) and biofuels (palm and soy bean oil) as a substitute for heavy fuel oil in the current (2006) fleet and compare their climate impact to that resulting from heavy fuel oil use. Our simulations suggest that ship-induced surface level concentrations of sulfate aerosol are strongly reduced, up to about 40-60% in the high-traffic regions. This clearly has positive consequences for pollution reduction in the vicinity of major harbors. Additionally, such reductions in the aerosol loading lead to a decrease of a factor of 3-4 in the indirect global aerosol effect induced by emissions from international shipping.
Journal of Climate | 2011
Lei Wang; Yuqing Wang; Axel Lauer; Shang-Ping Xie
AbstractThe seasonal cycle of marine boundary layer (MBL) clouds over the eastern Pacific Ocean is studied with the International Pacific Research Center (IPRC) Regional Atmospheric Model (iRAM). The results show that the model is capable of simulating not only the overall seasonal cycle but also the spatial distribution, cloud regime transition, and vertical structure of MBL clouds over the eastern Pacific. Although the modeled MBL cloud layer is generally too high in altitude over the open ocean when compared with available satellite observations, the model simulated well the westward deepening and decoupling of the MBL, the rise in cloud base and cloud top of the low cloud decks off the Peru and California coasts, and the cloud regime transition from stratocumulus near the coast to trade cumulus farther to the west in both the southeast and northeast Pacific. In particular, the model reproduced major features of the seasonal variations in stratocumulus decks off the Peru and California coasts, includin...
Meteorologische Zeitschrift | 2008
Klaus Franke; Veronika Eyring; R. Sander; Johannes Hendricks; Axel Lauer; Robert Sausen
The dispersion and chemical conversion of emissions in the near-field of a single ship are studied with two different modelling approaches to explore the differences between gradual dispersion and instantaneous dilution into a box with a size comparable to the large grid boxes of global scale models or satellite data. While both techniques use the same photochemical box model to solve the chemical equations, the dilution of the exhaust into the background air is different. One approach uses a Gaussian plume model and accounts for the expansion phase of a plume. The other one instantaneously disperses the emissions over a large gridbox, a technique commonly used by large scale models. In a first step we show that differences in the time evolution of ozone between the two model approaches are large for the case studied here, where emissions from a large container ship are released into the marine boundary layer with neutral stability. For emissions at noon, the differences in the ship induced ozone change at the reference time when both boxes are of equal size chosen to be 60 km are largest. The ozone change is then overestimated by the global-model approach by a factor of three. This results from the neglect of sub-grid scale OH loss due to NO2 oxidation in the globalmodel approach, which inhibits hydrocarbon oxidation and thus ozone production. Smallest differences are encountered for emissions released around sunset. One possibility to account for these sub-grid processes in global models is the use of effective emissions, i.e. actual emissions are changed and emissions of additional compounds like ozone are introduced in a way that they take sub-grid processes into account. In a second step we present effective emissions for the particular case discussed above. It is shown for this case that the method is able to account for the neglect of sub-grid processes in global models for different emission times and emission strengths.
Journal of Geophysical Research | 2009
Axel Lauer; Yuqing Wang; Vaughan T. J. Phillips; Cameron Stuart McNaughton; Ralf Bennartz; Antony D. Clarke
A double-moment cloud microphysics scheme with a prognostic treatment of aerosols inside clouds has been implemented into the International Pacific Research Center Regional Atmospheric Model (iRAM) to simulate marine boundary layer clouds over the eastern Pacific and to study aerosol-cloud interactions, including the aerosol indirect effect. This paper describes the new model system and presents a comparison of model results with observations. The results show that iRAM with the double-moment cloud microphysics scheme is able to reproduce the major features, including the geographical patterns and vertical distribution of the basic cloud parameters such as cloud droplet number, liquid water content, or droplet effective radii over the eastern Pacific reasonably well. However, the model tends to underestimate cloud droplet number concentrations near the coastal regions strongly influenced by advection of continental aerosols and precursor gases. In addition, the average location of the stratocumulus deck off South America is shifted to the northwest compared with the satellite observations. We apply the new model system to assess the indirect aerosol effect over the eastern Pacific by comparing a simulation with preindustrial aerosol to an otherwise identical simulation with present-day aerosol. Resulting changes in the cloud droplet number concentration are particularly pronounced in Gulf of Mexico and along the Pacific coastlines with local changes up to 70 cm(-3) (50% of the present-day value). The modeled domain-averaged 3-month (August-October) mean change in top-of-atmosphere net cloud forcing over the ocean owing to changes in the aerosol burden by anthropogenic activities is -1.6W m(-2) (Less)