Axel Rydevik
Uppsala University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Axel Rydevik.
Xenobiotica | 2013
Axel Rydevik; Mario Thevis; Oliver Krug; Ulf Bondesson; Mikael Hedeland
1. Selective androgen receptor modulators (SARMs) are a group of substances that have potential to be used as doping agents in sports. Being a relatively new group not available on the open market means that no reference materials are commercially available for the main metabolites. In the presented study, the in vitro metabolism of SARMs by the fungus Cunninghamella elegans has been investigated with the purpose of finding out if it can produce relevant human and equine metabolites. 2. Three different SARMs, S1, S4 and S24, were incubated for 5 days with C. elegans. The samples were analysed both with and without sample pretreatment using ultra performance liquid chromatography coupled to high resolution mass spectrometry. 3. All the important phase I and some phase II metabolites from human and horse were formed by the fungus. They were formed through reactions such as hydroxylation, deacetylation, O-dephenylation, nitro-reduction, acetylation and sulfonation. 4. The study showed that the fungus produced relevant metabolites of the SARMs and thus can be used to mimic mammalian metabolism. Furthermore, it has the potential to be used for future production of reference material.
Journal of Pharmaceutical and Biomedical Analysis | 2013
Axel Rydevik; Ulf Bondesson; Mario Thevis; Mikael Hedeland
A new concept for the production of drug glucuronides is presented and the products formed were characterized using ultra high performance liquid chromatography-high resolution mass spectrometry (UPLC-HRMS). Glucuronic acid conjugates are important phase II metabolites of a wide range of drugs. There is a lack of commercially available glucuronides and classic synthetic methods are tedious and expensive. Thus, new methods of glucuronide synthesis are needed. Selective androgen receptor modulators (SARMs) of the aryl propionamide class were used as model compounds and were incubated with the fungus Cunninghamella elegans which was previously known to conjugate drugs with glucose. The resulting glucoside metabolites were then oxidized with tetramethylpiperidinyl-1-oxy (TEMPO). UPLC-HRMS analysis showed that the peaks corresponding to the glucosides had disappeared after the reaction and were replaced by peaks with m/z consistent with the corresponding glucuronic acid conjugates. The MS/MS spectra of the reaction products were investigated and the observed fragment ion pattern corroborated the suggested structural change. A comparison in terms of retention times and product ion spectra between the glucuronides formed by the new method and those produced by liver microsomes indicated that the conjugates from the two different sources were identical, thus demonstrating the human relevance of the presented technique. Furthermore, the glucuronides formed by the presented method were readily hydrolyzed by β-glucuronidase which further gave evidence as to the fact that they were of β configuration. The investigated method was easy to perform, required a low input of work and had a low cost.
Journal of Pharmaceutical and Biomedical Analysis | 2014
Axel Rydevik; Andreas Lagojda; Mario Thevis; Ulf Bondesson; Mikael Hedeland
In this study, using mass spectrometry and nuclear magnetic resonance (NMR) spectroscopy, it has been confirmed that biotransformation with the fungus Cunninghamella elegans combined with chemical oxidation with the free radical tetramethylpiperidinyl-1-oxy (TEMPO) can produce drug glucuronides of β-configuration. Glucuronic acid conjugates are a common type of metabolites formed by the human body. The detection of such conjugates in doping control and other kinds of forensic analysis would be beneficial owing to a decrease in analysis time as hydrolysis can be omitted. However the commercial availability of reference standards for drug glucuronides is poor. The selective androgen receptor modulator (SARM) SARM S1 was incubated with the fungus C. elegans. The sample was treated with the free radical TEMPO oxidizing agent and was thereafter purified by SPE. A glucuronic acid conjugate was isolated using a fraction collector connected to an ultra high performance liquid chromatographic (UHPLC) system. The isolated compound was characterized by NMR spectroscopy and mass spectrometry and its structure was confirmed as a glucuronic acid β-conjugate of hydroxylated SARM S1 bearing the glucuronide moiety on carbon C-10.
Drug Testing and Analysis | 2015
Axel Rydevik; Annelie Hansson; Anna Hellqvist; Ulf Bondesson; Mikael Hedeland
A new model is presented that can be used to screen for bioactivation of drugs. The evaluation of toxicity is an important step in the development of new drugs. One way to detect possible toxic metabolites is to use trapping agents such as glutathione. Often human liver microsomes are used as a metabolic model in initial studies. However, there is a need for alternatives that are easy to handle, cheap, and can produce large amounts of metabolites. In the presented study, paracetamol, mefenamic acid, and diclofenac, all known to form reactive metabolites in humans, were incubated with the fungus Cunninghamella elegans and the metabolites formed were characterized with ultra high performance liquid chromatography coupled to a quadrupole time of flight mass spectrometer. Interestingly, glutathione conjugates formed by the fungus were observed for all three drugs and their retention times and MS/MS spectra matched those obtained in a comparative experiment with human liver microsomes. These findings clearly demonstrated that the fungus is a suitable trapping model for toxic biotransformation products. Cysteine conjugates of all three test drugs were also observed with high signal intensities in the fungal incubates, giving the model a further indicator of drug bioactivation. To our knowledge, this is the first demonstration of the use of a fungal model for the formation and trapping of reactive drug metabolites. The investigated model is cheap, easy to handle, it does not involve experimental animals and it can be scaled up to produce large amounts of metabolites.
Analytical and Bioanalytical Chemistry | 2013
Sven Guddat; Gregor Fußhöller; Simon Beuck; Andreas Thomas; Hans Geyer; Axel Rydevik; Ulf Bondesson; Mikael Hedeland; Andreas Lagojda; W. Schänzer; Mario Thevis
Rapid Communications in Mass Spectrometry | 2012
Axel Rydevik; Ulf Bondesson; Mikael Hedeland
ICRAV | 2014
Mikael Hedeland; Annelie Hansson; Axel Rydevik; Oliver Krug; Mario Thevis; Ulf Bondesson; Heather K. Knych; Scott D. Stanley
ASMS | 2013
Axel Rydevik; Anna Hellqvist; Ulf Bondesson; Mikael Hedeland
ASMS | 2013
Axel Rydevik; Ulf Bondesson; Mario Thevis; Mikael Hedeland
AORC | 2013
Axel Rydevik; Ulf Bondesson; Mario Thevis; Mikael Hedeland