Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Axel T. Neffe is active.

Publication


Featured researches published by Axel T. Neffe.


Journal of Controlled Release | 2009

Evaluation of a degradable shape-memory polymer network as matrix for controlled drug release.

Christian Wischke; Axel T. Neffe; Susi Steuer; Andreas Lendlein

Degradable shape-memory polymers are multifunctional materials with broad applicability for medical devices. They are designed to acquire their therapeutically relevant shape and mechanical properties after implantation. In this study, the potential of a completely amorphous shape-memory polymer matrix for controlled drug release was comprehensively characterized according to a four step general strategy which provides concepts for validating multifunctional materials for pharmaceutical applications. Independent functionalities are thereby crucial for fully exploiting the potential of the materials. The copolyester urethane network was synthesized by crosslinking star-shaped tetrahydroxy telechelics of oligo[(rac-lactide)-co-glycolide] with an aliphatic diisocyanate. In step 1 of the four step characterization procedure, this material showed the thermal and mechanical properties, which are required for the shape-memory effect under physiological conditions. Shape recovery could be realized by a one-step or a multi-step methodology. In step 2, feasibility of drug loading of pre-formed shape-memory networks has been demonstrated with drugs of different hydrophobicities. The presence of drugs did not disturb the materials functionalities directly after loading (step 3) and under release conditions (step 4). A predictable release of about 90% of the payload in 80 days was observed. Overall, the synthesized amorphous polymer network showed three independent functionalities, i.e., a shape-memory effect combined with biodegradability and controlled drug release.


Advanced Materials | 2009

Polymer Networks Combining Controlled Drug Release, Biodegradation, and Shape Memory Capability

Axel T. Neffe; Bui D. Hanh; Susi Steuer; Andreas Lendlein

[*] Prof. A. Lendlein, Dr. A. T. Neffe, Dr. B. D. Hanh, Dr. S. Steuer Center for Biomaterial Development, Institute of Polymer Research GKSS Research Centre Geesthacht GmbH Kantstrasse 55, 14513 Teltow (Germany) E-mail: [email protected] Prof. A. Lendlein, Dr. A. T. Neffe Berlin-Brandenburg Center for Regenerative Therapies (BCRT) Charité-Universitätsmedizin Berlin-BCRT, Campus Virchow-Klinikum Augustenburger Platz 1, 13353 Berlin (Germany) [+] Present address: Intervet Innovation GmbH, Zur Propstei, 55270 Schwabenheim, Germany


Journal of Materials Chemistry | 2010

An entropy–elastic gelatin-based hydrogel system

Giuseppe Tronci; Axel T. Neffe; Benjamin F. Pierce; Andreas Lendlein

Gelatin is a non-immunogenic and degradable biopolymer, which is widely applied in the biomedical field e.g. for drug capsules or as absorbable hemostats. However, gelatin materials present limited and hardly reproducible mechanical properties especially in aqueous systems, particularly caused by the uncontrollable partial renaturation of collagen-like triple helices. Therefore, mechanically demanding applications for gelatin-based materials, such as vascular patches, i.e. hydrogel films that seal large incisions in vessel walls, and for induced autoregeneration, are basically excluded if this challenge is not addressed. Through the synthesis of a defined chemical network of gelatin with hexamethylene diisocyanate (HDI) in DMSO, the self-organization of gelatin chains could be hindered and amorphous gelatin films were successfully prepared having Youngs moduli of 60–530 kPa. Transferring the crosslinking reaction with HDI and, alternatively, ethyl lysine diisocyanate (LDI), to water as reaction medium allowed the tailoring of swelling behaviour and mechanical properties by variation of crosslinker content while suppressing the formation of helices. The hydrogels had Youngs moduli of 70–740 kPa, compressive moduli of 16–48 kPa, and degrees of swelling of 300–800 vol%. Test reactions investigated by ESI mass spectrometry allowed the identification and quantification of reaction products of the crosslinking reaction. The HDI crosslinked networks were stabilized by direct covalent crosslinks (ca. 10 mol%), supported by grafting (50 mol%) and blending of hydrophobic oligomeric chains. For the LDI-based networks, less crosslinked (3 mol%) and grafted species (5 mol%) and much higher amounts of oligomers were observed. The adjustable hydrogel system enables the application of gelatin-based materials in physiological environments.


Angewandte Chemie | 2009

Molecular Modeling, Synthesis, and Biological Evaluation of Macrocyclic Calpain Inhibitors

Andrew D. Abell; Matthew A. Jones; James M. Coxon; James D. Morton; Steven G. Aitken; Stephen B. McNabb; Hannah Y.-Y. Lee; Janna M. Mehrtens; Nathan A. Alexander; Blair G. Stuart; Axel T. Neffe; Roy Bickerstaffe

The design and elaboration of a series of macrocyclic templates that exhibit a propensity to adopt a beta-strand-like peptide-backbone conformation led to potent and selective inhibitors of calpain 2. Macrocycle 1 retarded calcium-induced opacification in an ovine-lens culture assay and is a lead compound for the development of a drug for cataract treatment. Cbz=carbobenzyloxy.


Acta Biomaterialia | 2011

Gelatin functionalization with tyrosine derived moieties to increase the interaction with hydroxyapatite fillers

Axel T. Neffe; Axel Loebus; Alessandro Zaupa; Christian Stoetzel; Frank A. Müller; Andreas Lendlein

Combining gelatins functionalized with the tyrosine-derived groups desaminotyrosine or desaminotyrosyl tyrosine with hydroxyapatite (HAp) led to the formation of composite materials with much lower swelling ratios than those of the pure matrices. Shifts of the infra-red (IR) bands related to the free carboxyl groups could be observed in the presence of HAp, which suggested a direct interaction of matrix and filler that formed additional physical cross-links in the material. In tensile tests and rheological measurements the composites equilibrated in water had increased Youngs moduli (from 200 kPa up to 2 MPa) and tensile strengths (from 57 kPa up to 1.1 MPa) compared with the matrix polymers without affecting the elongation at break. Furthermore, an increased thermal stability of the networks from 40 to 85°C could be demonstrated. The differences in the behaviour of the functionalized gelatins compared with pure gelatin as a matrix suggested an additional stabilizing bond between the incorporated aromatic groups and the HAp as supported by the IR results. The composites can potentially be applied as bone fillers.


Advanced Materials | 2015

One Step Creation of Multifunctional 3D Architectured Hydrogels Inducing Bone Regeneration

Axel T. Neffe; Benjamin F. Pierce; Giuseppe Tronci; Nan Ma; Erik Pittermann; Tim Gebauer; Oliver Frank; Michael Schossig; Xun Xu; Bettina M. Willie; Michèle Forner; Agnes Ellinghaus; Jasmin Lienau; Georg N. Duda; Andreas Lendlein

Structured hydrogels showing form stability and elastic properties individually tailorable on different length scales are accessible in a one-step process. They support cell adhesion and differentiation and display growing pore size during degradation. In vivo experiments demonstrate their efficacy in biomaterial-induced bone regeneration, not requiring addition of cells or growth factors.


Macromolecular Chemistry and Physics | 2010

Controlled Change of Mechanical Properties during Hydrolytic Degradation of Polyester Urethane Networks

Axel T. Neffe; Giuseppe Tronci; Armin Alteheld; Andreas Lendlein

Polyester urethane networks are versatile polymer systems as it is possible to tailor their mechanical properties and their hydrolytic degradation profile. For biomedical applications, the biodegradability as well as the thermomechanical properties of the polymer networks during the course of degradation is of importance. Therefore, we investigated the change of thermomechanical properties of networks based on star-shaped precursors of rac-dilactide and diglycolide, e-caprolactone, or p-dioxanone, respectively, during hydrolytic degradation. Degradation rate and mechanical properties of the polymer networks were tailored by crosslink density, comonomers, and by changing the glass transition temperature. Most importantly, the degradation of the networks led to a controlled, step-by-step change of the mechanical properties of the networks.


Advances in Polymer Science | 2009

Controlled Drug Release from Biodegradable Shape-Memory Polymers

Christian Wischke; Axel T. Neffe; Andreas Lendlein

Biodegradable shape-memory polymers (SMPs) have attracted significant interest for biomedical applications. Modern concepts for biofunctional implants often comprise the controlled release of bioactive compounds to gain specific biofunctionalities. Therefore, a general strategy has been suggested for polymer systems combining degradability and shape-memory capability with controlled release of drugs. This chapter provides a detailed description of the molecular basis for such multifunctional SMPs including the selection of building blocks, the polymer morphology, and the three dimensional architecture. Moreover, drug loading and release, drug effects on thermomechanical properties of SMPs, and drug release patterns in a physiological environment are described and potential applications in minimally-invasive surgery are discussed.


Biomacromolecules | 2011

Influence of Tyrosine-Derived Moieties and Drying Conditions on the Formation of Helices in Gelatin

Alessandro Zaupa; Axel T. Neffe; Benjamin F. Pierce; Ulrich Nöchel; Andreas Lendlein

The single and triple helical organization of protein chains strongly influences the mechanical properties of gelatin-based materials. A chemical method for obtaining different degrees of helical organization in gelatin is covalent functionalization, while a physical method for achieving the same goal is the variation of the drying conditions of gelatin solutions. Here we explored how the introduction of desaminotyrosine (DAT) and desaminotyrosyl tyrosine (DATT) linked to lysine residues of gelatin influenced the kinetics and thermodynamic equilibrium of the helicalization process of single and triple helices following different drying conditions. Drying at a temperature above the helix-to-coil transition temperature of gelatin (T > T(c), called v(short)) generally resulted in gelatins with relatively lower triple helical content (X(c,t) = 1-2%) than lower temperature drying (T < T(c), called v(long)) (X(c,t) = 8-10%), where the DAT(T) functional groups generally disrupted helix formation. While different helical contents affected the thermal transition temperatures only slightly, the mechanical properties were strongly affected for swollen hydrogels (E = 4-13 kPa for samples treated by v(long) and E = 120-700 kPa for samples treated by v(short)). This study shows that side group functionalization and different drying conditions are viable options to control the helicalization and macroscopic properties of gelatin-based materials.


Biomaterials | 2014

Biocompatibility and inflammatory response in vitro and in vivo to gelatin-based biomaterials with tailorable elastic properties

Sandra Ullm; Anne Krüger; Christoph Tondera; Tim Gebauer; Axel T. Neffe; Andreas Lendlein; F. Jung; Jens Pietzsch

Hydrogels prepared from gelatin and lysine diisocyanate ethyl ester provide tailorable elastic properties and degradation behavior. Their interaction with human aortic endothelial cells (HAEC) as well as human macrophages (Mɸ) and granulocytes (Gɸ) were explored. The experiments revealed a good biocompatibility, appropriate cell adhesion, and cell infiltration. Direct contact to hydrogels, but not contact to hydrolytic or enzymatic hydrogel degradation products, resulted in enhanced cyclooxygenase-2 (COX-2) expression in all cell types, indicating a weak inflammatory activation in vitro. Only Mɸ altered their cytokine secretion profile after direct hydrogel contact, indicating a comparably pronounced inflammatory activation. On the other hand, in HAEC the expression of tight junction proteins, as well as cytokine and matrix metalloproteinase secretion were not influenced by the hydrogels, suggesting a maintained endothelial cell function. This was in line with the finding that in HAEC increased thrombomodulin synthesis but no thrombomodulin membrane shedding occurred. First in vivo data obtained after subcutaneous implantation of the materials in immunocompetent mice revealed good integration of implants in the surrounding tissue, no progredient fibrous capsule formation, and no inflammatory tissue reaction in vivo. Overall, the study demonstrates the potential of gelatin-based hydrogels for temporal replacement and functional regeneration of damaged soft tissue.

Collaboration


Dive into the Axel T. Neffe's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nan Ma

Free University of Berlin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rainer Haag

Free University of Berlin

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge