Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Axel Vater is active.

Publication


Featured researches published by Axel Vater.


American Journal of Respiratory and Critical Care Medicine | 2012

Immune and Inflammatory Cell Involvement in the Pathology of Idiopathic Pulmonary Arterial Hypertension

Rajkumar Savai; Soni Savai Pullamsetti; Julia Kolbe; Ewa Bieniek; Robert Voswinckel; Ludger Fink; A. Scheed; Christin Ritter; Bhola K. Dahal; Axel Vater; Sven Klussmann; Hossein Ardeschir Ghofrani; Norbert Weissmann; Walter Klepetko; Gamal Andre Banat; Werner Seeger; Friedrich Grimminger; Ralph T. Schermuly

RATIONALE Pulmonary arterial hypertension (PAH) is characterized by vasoconstriction and vascular remodeling. Recent studies have revealed that immune and inflammatory responses play a crucial role in pathogenesis of idiopathic PAH. OBJECTIVES To systematically evaluate the number and cross-sectional distribution of inflammatory cells in different sizes of pulmonary arteries from explanted lungs of patients with idiopathic PAH versus healthy donor lungs and to demonstrate functional relevance by blocking stromal-derived factor-1 by the Spiegelmer NOX-A12 in monocrotaline-induced pulmonary hypertension in rats. METHODS Immunohistochemistry was performed on lung tissue sections from patients with idiopathic PAH and healthy donors. All positively stained cells in whole-lung tissue sections, surrounding the vessels, and in the different compartments of the vessels were counted. To study the effects of blocking SDF-1, rats with monocrotaline-induced pulmonary hypertension were treated with NOX-A12 from Day 21 to Day 35 after monocrotaline administration. MEASUREMENTS AND MAIN RESULTS We found a significant increase of the perivascular number of macrophages (CD68(+)), macrophages/monocytes (CD14(+)), mast cells (toluidine blue(+)), dendritic cells (CD209(+)), T cells (CD3(+)), cytotoxic T cells (CD8(+)), and helper T cells (CD4(+)) in vessels of idiopathic PAH lungs compared with control subjects. FoxP3(+) mononuclear cells were significantly decreased. In the monocrotaline model, the NOX-A12-induced reduction of mast cells, CD68(+) macrophages, and CD3(+) T cells was associated with improvement of hemodynamics and pulmonary vascular remodeling. CONCLUSIONS Our findings reveal altered perivascular inflammatory cell infiltration in pulmonary vascular lesions of patients with idiopathic pulmonary arterial hypertension. Targeting attraction of inflammatory cells by blocking stromal-derived factor-1 may be a novel approach for treatment of PAH.


American Journal of Pathology | 2011

Dual Blockade of the Homeostatic Chemokine CXCL12 and the Proinflammatory Chemokine CCL2 Has Additive Protective Effects on Diabetic Kidney Disease

Murthy Narayana Darisipudi; Onkar P. Kulkarni; Sufyan G. Sayyed; Mi Ryu; Adriana Migliorini; Costanza Sagrinati; Eliana Parente; Axel Vater; Dirk Eulberg; Sven Klussmann; Paola Romagnani; Hans-Joachim Anders

Monocyte/ chemoattractant protein-1/chemokine ligand (CCL) 2 and stromal cell-derived factor-1/CXCL12 both contribute to glomerulosclerosis in mice with type 2 diabetes mellitus, through different mechanisms. CCL2 mediates macrophage-related inflammation, whereas CXCL12 contributes to podocyte loss. Therefore, we hypothesized that dual antagonism of these chemokines might have additive protective effects on the progression of diabetic nephropathy. We used chemokine antagonists based on structured l-enantiomeric RNA (so-called Spiegelmers) ie, the CCL2-specific mNOX-E36 and the CXCL12-specific NOX-A12. Male db/db mice, uninephrectomized at the age of 6 weeks, received injections of Spiegelmer, both Spiegelmers, nonfunctional control Spiegelmer, or vehicle from the age of 4 months for 8 weeks. Dual blockade was significantly more effective than monotherapy in preventing glomerulosclerosis. CCL2 blockade reduced glomerular leukocyte counts and renal-inducible nitric oxide synthase or IL-6 mRNA expression. CXCL12 blockade maintained podocyte numbers and renal nephrin and podocin mRNA expression. Consistently, CXCL12 blockade suppressed nephrin mRNA up-regulation in primary cultures of human glomerular progenitors induced to differentiate toward the podocyte lineage. All previously mentioned parameters were significantly improved in the dual-blockade group, which also suppressed proteinuria and was associated with the highest levels of glomerular filtration rate. Blood glucose levels and body weight were identical in all treatment groups. Dual chemokine blockade can have additive effects on the progression of diabetic kidney disease when the respective chemokine targets mediate different pathomechanisms of disease (ie, inflammation and progenitor differentiation toward the podocyte lineage).


Drug Discovery Today | 2015

Turning mirror-image oligonucleotides into drugs: the evolution of Spiegelmer® therapeutics ☆

Axel Vater; Sven Klussmann

Spiegelmers are synthetic target-binding oligonucleotides built from non-natural l-nucleotides. Like aptamers, Spiegelmers fold into distinct shapes that bind the targets with high affinity and selectivity. Furthermore, the mirror-image configuration confers plasma stability and immunological passivity. Various Spiegelmers against pharmacologically attractive targets were shown to be efficacious in animal models. Three Spiegelmer candidates: emapticap pegol (NOX-E36; anti-CCL2), olaptesed pegol (NOX-A12; anti-CXCL12) and lexaptepid pegol (NOX-H94; anti-hepcidin), underwent regulatory safety studies, demonstrated good safety profiles in healthy volunteers and were taken into Phase IIa studies in patients. Proof-of-concept for emapticap pegol has recently been demonstrated in diabetic nephropathy patients. Furthermore, promising interim Phase IIa data of olaptesed pegol and lexapteptid pegol also suggest efficacy in the respective patient populations.


Cell Reports | 2014

SDF-1 Inhibition Targets the Bone Marrow Niche for Cancer Therapy

Aldo M. Roccaro; Antonio Sacco; Werner Purschke; Michele Moschetta; Klaus Buchner; Christian Maasch; Dirk Zboralski; Stefan Zöllner; Stefan Vonhoff; Yuji Mishima; Patricia Maiso; Michaela R. Reagan; Silvia Lonardi; Marco Ungari; Fabio Facchetti; Dirk Eulberg; Anna Kruschinski; Axel Vater; Giuseppe Rossi; Sven Klussmann; Irene M. Ghobrial

Bone marrow (BM) metastasis remains one of the main causes of death associated with solid tumors as well as multiple myeloma (MM). Targeting the BM niche to prevent or modulate metastasis has not been successful to date. Here, we show that stromal cell-derived factor-1 (SDF-1/CXCL12) is highly expressed in active MM, as well as in BM sites of tumor metastasis and report on the discovery of the high-affinity anti-SDF-1 PEGylated mirror-image l-oligonucleotide (olaptesed-pegol). In vivo confocal imaging showed that SDF-1 levels are increased within MM cell-colonized BM areas. Using in vivo murine and xenograft mouse models, we document that in vivo SDF-1 neutralization within BM niches leads to a microenvironment that is less receptive for MM cells and reduces MM cell homing and growth, thereby inhibiting MM disease progression. Targeting of SDF-1 represents a valid strategy for preventing or disrupting colonization of the BM by MM cells.


Molecular Therapy | 2013

A novel C5a-neutralizing mirror-image (l-)aptamer prevents organ failure and improves survival in experimental sepsis.

Kai Hoehlig; Christian Maasch; Nelli Shushakova; Klaus Buchner; Markus Huber-Lang; Werner Purschke; Axel Vater; Sven Klussmann

Complement factor C5a is a potent proinflammatory mediator that contributes to the pathogenesis of numerous inflammatory diseases. Here, we describe the discovery of NOX-D20, a PEGylated biostable mirror-image mixed (l-)RNA/DNA aptamer (Spiegelmer) that binds to mouse and human C5a with picomolar affinity. In vitro, NOX-D20 inhibited C5a-induced chemotaxis of a CD88-expressing cell line and efficiently antagonized the activation of primary human polymorphonuclear leukocytes (PMN) by C5a. Binding of NOX-D20 to the C5a moiety of human C5 did not interfere with the formation of the terminal membrane attack complex (MAC). In sepsis, for which a specific interventional therapy is currently lacking, complement activation and elevated levels of C5a are suggested to contribute to multiorgan failure and mortality. In the model of polymicrobial sepsis induced by cecal ligation and puncture (CLP), NOX-D20 attenuated inflammation and organ damage, prevented the breakdown of the vascular endothelial barrier, and improved survival. Our study suggests NOX-D20 as a new therapeutic candidate for the treatment of sepsis.


Molecular Cancer Research | 2013

Bioactive lipids S1P and C1P are prometastatic factors in human rhabdomyosarcoma, and their tissue levels increase in response to radio/chemotherapy.

Gabriela Schneider; Ewa Bryndza; Ahmed Abdel-Latif; Janina Ratajczak; Magdalena Maj; Maciej Tarnowski; Yuri M. Klyachkin; Peter J. Houghton; Andrew J. Morris; Axel Vater; Sven Klussmann; Magdalena Kucia; Mariusz Z. Ratajczak

Evidence suggests that bioactive lipids may regulate pathophysiologic functions such as cancer cell metastasis. Therefore, we determined that the bioactive lipid chemoattractants sphingosine-1-phosphate (S1P) and ceramide-1-phosphate (C1P) strongly enhanced the in vitro motility and adhesion of human rhabdomyosarcoma (RMS) cells. Importantly, this effect was observed at physiologic concentrations for both bioactive lipids, which are present in biologic fluids, and were much stronger than the effects observed in response to known RMS prometastatic factors such as stromal derived factors-1 (SDF-1/CXCL12) or hepatocyte growth factor/scatter factor (HGF/SF). We also present novel evidence that the levels of S1P and C1P were increased in several organs after γ-irradiation or chemotherapy, which indicates an unwanted prometastatic environment related to treatment. Critically, we found that the metastasis of RMS cells in response to S1P can be effectively inhibited in vivo with the S1P-specific binder NOX-S93 that is based on a high-affinity Spiegelmer. These data indicate that bioactive lipids play a vital role in dissemination of RMS and contribute to the unwanted side effects of radio/chemotherapy by creating a prometastatic microenvironment. Mol Cancer Res; 11(7); 793–807. ©2013 AACR.


British Journal of Pharmacology | 2009

Inhibition of stimulated meningeal blood flow by a calcitonin gene-related peptide binding mirror-image RNA oligonucleotide.

Thomas Denekas; Markus Tröltzsch; Axel Vater; Sven Klussmann; Karl Messlinger

1 Calcitonin gene‐related peptide (CGRP) released from trigeminal afferents is known to play an important role in the control of intracranial blood flow. In a rat preparation with exposed cranial dura mater, periods of electrical stimulation induce increases in meningeal blood flow. These responses are due to arterial vasodilatation mediated in part by the release of CGRP. In this preparation, the effect of a CGRP‐binding mirror‐image oligonucleotide (Spiegelmer NOX‐C89) was examined. 2 Spiegelmer NOX‐C89 applied topically at concentrations between 10−7and 10−5 M to the exposed dura mater led to a dose‐dependent inhibition of the electrically evoked blood flow increases. The highest dose reduced the mean increases in flow to 56% of the respective control levels. A nonfunctional control Spiegelmer (not binding to CGRP) was ineffective in changing blood flow increases. Intravenous injection of NOX‐C89 (5 mg kg−1) reduced the evoked blood flow increases to an average of 65.5% of the control. The basal blood flow was not changed by any of the applied substances. 3 In addition, an ex vivo preparation of the hemisected rat skull was used to determine CGRP release from the cranial dura mater caused by antidromic activation of meningeal afferents. In this model, 10−6 M of NOX‐C89 reduced the evoked CGRP release by about 50%. 4 We conclude that increases in meningeal blood flow due to afferent activation can be reduced by sequestering the released CGRP and thus preventing it from activating vascular CGRP receptors. Moreover, the Spiegelmer NOX‐C89 may inhibit CGRP release from meningeal afferents. Therefore, the approach to interfere with the CGRP/CGRP receptor system by binding the CGRP may open a new opportunity for the therapy of diseases that are linked to excessive CGRP release such as some forms of primary headaches.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Targeting complement component 5a promotes vascular integrity and limits airway remodeling

Mohammad A. Khan; Christian Maasch; Axel Vater; Sven Klussmann; John Morser; Lawrence L. K. Leung; Carl Atkinson; Stephen Tomlinson; Peter S. Heeger; Mark R. Nicolls

Increased microvascular dilatation and permeability is observed during allograft rejection. Because vascular integrity is an important indicator of transplant health, we have sought to limit injury to blood vessels by blocking complement activation. Although complement component 3 (C3) inhibition is known to be vasculoprotective in transplantation studies, we recently demonstrated the paradoxical finding that, early in rejection, C3−/− transplant recipients actually exhibit worse microvascular injury than controls. In the genetic absence of C3, thrombin-mediated complement component 5 (C5) convertase activity leads to the generation of C5a (anaphylatoxin), a promoter of vasodilatation and permeability. In the current study, we demonstrated that microvessel thrombin deposition is significantly increased in C3−/− recipients during acute rejection. Thrombin colocalization with microvessels is closely associated with remarkably elevated plasma levels of C5a, vasodilatation, and increased vascular permeability. Administration of NOX-D19, a specific C5a inhibitor, to C3−/− recipients of airway transplants significantly improved tissue oxygenation, limited microvascular leakiness, and prevented airway ischemia, even in the absence of conventional T-cell–directed immunosuppression. As C3 inhibitors enter the clinics, the simultaneous targeting of this thrombin-mediated complement activation pathway and/or C5a itself may confer significant clinical benefit.


Journal of Biological Chemistry | 2013

A Mixed Mirror-image DNA/RNA Aptamer Inhibits Glucagon and Acutely Improves Glucose Tolerance in Models of Type 1 and Type 2 Diabetes

Axel Vater; Simone Sell; Przemyslaw Kaczmarek; Christian Maasch; Klaus Buchner; Ewa Pruszyńska-Oszmałek; Paweł A. Kołodziejski; Werner Purschke; Krzysztof W. Nowak; Mathias Z. Strowski; Sven Klussmann

Background: An increased glucagon/insulin ratio is known to contribute to hyperglycemia in diabetes. Results: NOX-G15, a mirror-image mixed DNA/RNA glucagon-neutralizing aptamer, was identified. It improved glucose tolerance in models of type 1 and 2 diabetes. Conclusion: NOX-G15 may be useful for treatment of type 1 and 2 diabetes. Significance: The new therapeutic candidate may help to reduce insulin need in diabetes. Excessive secretion of glucagon, a functional insulin antagonist, significantly contributes to hyperglycemia in type 1 and type 2 diabetes. Accordingly, immunoneutralization of glucagon or genetic deletion of the glucagon receptor improved glucose homeostasis in animal models of diabetes. Despite this strong evidence, agents that selectively interfere with endogenous glucagon have not been implemented in clinical practice yet. We report the discovery of mirror-image DNA-aptamers (Spiegelmer®) that bind and inhibit glucagon. The affinity of the best binding DNA oligonucleotide was remarkably increased (>25-fold) by the introduction of oxygen atoms at selected 2′-positions through deoxyribo- to ribonucleotide exchanges resulting in a mixed DNA/RNA-Spiegelmer (NOX-G15) that binds glucagon with a Kd of 3 nm. NOX-G15 shows no cross-reactivity with related peptides such as glucagon-like peptide-1, glucagon-like peptide-2, gastric-inhibitory peptide, and prepro-vasoactive intestinal peptide. In vitro, NOX-G15 inhibits glucagon-stimulated cAMP production in CHO cells overexpressing the human glucagon receptor with an IC50 of 3.4 nm. A single injection of NOX-G15 ameliorated glucose excursions in intraperitoneal glucose tolerance tests in mice with streptozotocin-induced (type 1) diabetes and in a non-genetic mouse model of type 2 diabetes. In conclusion, the data suggest NOX-G15 as a therapeutic candidate with the potential to acutely attenuate hyperglycemia in type 1 and type 2 diabetes.


Nature Communications | 2015

Structural basis for the targeting of complement anaphylatoxin C5a using a mixed L-RNA/L-DNA aptamer

Laure Yatime; Christian Maasch; Kai Hoehlig; Sven Klussmann; Gregers R. Andersen; Axel Vater

L-Oligonucleotide aptamers (Spiegelmers) consist of non-natural L-configured nucleotides and are of particular therapeutic interest due to their high resistance to plasma nucleases. The anaphylatoxin C5a, a potent inflammatory mediator generated during complement activation that has been implicated with organ damage, can be efficiently targeted by Spiegelmers. Here, we present the first crystallographic structures of an active Spiegelmer, NOX-D20, bound to its physiological targets, mouse C5a and C5a-desArg. The structures reveal a complex 3D architecture for the L-aptamer that wraps around C5a, including an intramolecular G-quadruplex stabilized by a central Ca2+ ion. Functional validation of the observed L-aptamer:C5a binding mode through mutational studies also rationalizes the specificity of NOX-D20 for mouse and human C5a against macaque and rat C5a. Finally, our structural model provides the molecular basis for the Spiegelmer affinity improvement through positional L-ribonucleotide to L-deoxyribonucleotide exchanges and for its inhibition of the C5a:C5aR interaction.

Collaboration


Dive into the Axel Vater's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christian Maasch

Max Delbrück Center for Molecular Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Klaus Buchner

Free University of Berlin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge