Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Axel W. Fischer is active.

Publication


Featured researches published by Axel W. Fischer.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Protonation-dependent conformational dynamics of the multidrug transporter EmrE

Reza Dastvan; Axel W. Fischer; Smriti Mishra; Jens Meiler; Hassane S. Mchaourab

Significance Small multidrug resistance (SMR) transporters play an important role in the protection of prokaryotes from cytotoxic molecules. They exploit the proton electrochemical gradient to drive the transport of these molecules out of the cell against their concentration gradient. This work investigated how binding of protons power the conformational changes that enable substrate binding and subsequent alternating access of the Escherichia coli SMR transporter EmrE. The results show that protonation induces large-scale reconfiguration of the structure, including helical rotation and tilt and repacking of loops. A highly conserved charged residue primarily accounts for proton sensing, but other acidic residues control local structures. Our findings stimulate a structural model of transport, offering a novel perspective on proton-coupled multidrug transport. The small multidrug transporter from Escherichia coli, EmrE, couples the energetically uphill extrusion of hydrophobic cations out of the cell to the transport of two protons down their electrochemical gradient. Although principal mechanistic elements of proton/substrate antiport have been described, the structural record is limited to the conformation of the substrate-bound state, which has been shown to undergo isoenergetic alternating access. A central but missing link in the structure/mechanism relationship is a description of the proton-bound state, which is an obligatory intermediate in the transport cycle. Here we report a systematic spin labeling and double electron electron resonance (DEER) study that uncovers the conformational changes of EmrE subsequent to protonation of critical acidic residues in the context of a global description of ligand-induced structural rearrangements. We find that protonation of E14 leads to extensive rotation and tilt of transmembrane helices 1–3 in conjunction with repacking of loops, conformational changes that alter the coordination of the bound substrate and modulate its access to the binding site from the lipid bilayer. The transport model that emerges from our data posits a proton-bound, but occluded, resting state. Substrate binding from the inner leaflet of the bilayer releases the protons and triggers alternating access between inward- and outward-facing conformations of the substrate-loaded transporter, thus enabling antiport without dissipation of the proton gradient.


Methods | 2015

Protein structure prediction guided by crosslinking restraints – A systematic evaluation of the impact of the crosslinking spacer length

Tommy Hofmann; Axel W. Fischer; Jens Meiler; Stefan Kalkhof

Recent development of high-resolution mass spectrometry (MS) instruments enables chemical crosslinking (XL) to become a high-throughput method for obtaining structural information about proteins. Restraints derived from XL-MS experiments have been used successfully for structure refinement and protein-protein docking. However, one formidable question is under which circumstances XL-MS data might be sufficient to determine a proteins tertiary structure de novo? Answering this question will not only include understanding the impact of XL-MS data on sampling and scoring within a de novo protein structure prediction algorithm, it must also determine an optimal crosslinker type and length for protein structure determination. While a longer crosslinker will yield more restraints, the value of each restraint for protein structure prediction decreases as the restraint is consistent with a larger conformational space. In this study, the number of crosslinks and their discriminative power was systematically analyzed in silico on a set of 2055 non-redundant protein folds considering Lys-Lys, Lys-Asp, Lys-Glu, Cys-Cys, and Arg-Arg reactive crosslinkers between 1 and 60Å. Depending on the protein size a heuristic was developed that determines the optimal crosslinker length. Next, simulated restraints of variable length were used to de novo predict the tertiary structure of fifteen proteins using the BCL::Fold algorithm. The results demonstrate that a distinct crosslinker length exists for which information content for de novo protein structure prediction is maximized. The sampling accuracy improves on average by 1.0 Å and up to 2.2 Å in the most prominent example. XL-MS restraints enable consistently an improved selection of native-like models with an average enrichment of 2.1.


Journal of Structural Biology | 2016

Pushing the size limit of de novo structure ensemble prediction guided by sparse SDSL-EPR restraints to 200 residues: The monomeric and homodimeric forms of BAX

Axel W. Fischer; Enrica Bordignon; Stephanie Bleicken; Ana J. García-Sáez; Gunnar Jeschke; Jens Meiler

Structure determination remains a challenge for many biologically important proteins. In particular, proteins that adopt multiple conformations often evade crystallization in all biologically relevant states. Although computational de novo protein folding approaches often sample biologically relevant conformations, the selection of the most accurate model for different functional states remains a formidable challenge, in particular, for proteins with more than about 150 residues. Electron paramagnetic resonance (EPR) spectroscopy can obtain limited structural information for proteins in well-defined biological states and thereby assist in selecting biologically relevant conformations. The present study demonstrates that de novo folding methods are able to accurately sample the folds of 192-residue long soluble monomeric Bcl-2-associated X protein (BAX). The tertiary structures of the monomeric and homodimeric forms of BAX were predicted using the primary structure as well as 25 and 11 EPR distance restraints, respectively. The predicted models were subsequently compared to respective NMR/X-ray structures of BAX. EPR restraints improve the protein-size normalized root-mean-square-deviation (RMSD100) of the most accurate models with respect to the NMR/crystal structure from 5.9Å to 3.9Å and from 5.7Å to 3.3Å, respectively. Additionally, the model discrimination is improved, which is demonstrated by an improvement of the enrichment from 5% to 15% and from 13% to 21%, respectively.


Proteins | 2015

CASP10–BCL::Fold efficiently samples topologies of large proteins

Sten Heinze; Daniel K. Putnam; Axel W. Fischer; Tim Kohlmann; Brian E. Weiner; Jens Meiler

During CASP10 in summer 2012, we tested BCL::Fold for prediction of free modeling (FM) and template‐based modeling (TBM) targets. BCL::Fold assembles the tertiary structure of a protein from predicted secondary structure elements (SSEs) omitting more flexible loop regions early on. This approach enables the sampling of conformational space for larger proteins with more complex topologies. In preparation of CASP11, we analyzed the quality of CASP10 models throughout the prediction pipeline to understand BCL::Folds ability to sample the native topology, identify native‐like models by scoring and/or clustering approaches, and our ability to add loop regions and side chains to initial SSE‐only models. The standout observation is that BCL::Fold sampled topologies with a GDT_TS score > 33% for 12 of 18 and with a topology score > 0.8 for 11 of 18 test cases de novo. Despite the sampling success of BCL::Fold, significant challenges still exist in clustering and loop generation stages of the pipeline. The clustering approach employed for model selection often failed to identify the most native‐like assembly of SSEs for further refinement and submission. It was also observed that for some β‐strand proteins model refinement failed as β‐strands were not properly aligned to form hydrogen bonds removing otherwise accurate models from the pool. Further, BCL::Fold samples frequently non‐natural topologies that require loop regions to pass through the center of the protein. Proteins 2015; 83:547–563.


PLOS ONE | 2016

CASP11 – An Evaluation of a Modular BCL::Fold-Based Protein Structure Prediction Pipeline

Axel W. Fischer; Sten Heinze; Daniel K. Putnam; Bian Li; James C. Pino; Yan Xia; Carlos F. Lopez; Jens Meiler

In silico prediction of a protein’s tertiary structure remains an unsolved problem. The community-wide Critical Assessment of Protein Structure Prediction (CASP) experiment provides a double-blind study to evaluate improvements in protein structure prediction algorithms. We developed a protein structure prediction pipeline employing a three-stage approach, consisting of low-resolution topology search, high-resolution refinement, and molecular dynamics simulation to predict the tertiary structure of proteins from the primary structure alone or including distance restraints either from predicted residue-residue contacts, nuclear magnetic resonance (NMR) nuclear overhauser effect (NOE) experiments, or mass spectroscopy (MS) cross-linking (XL) data. The protein structure prediction pipeline was evaluated in the CASP11 experiment on twenty regular protein targets as well as thirty-three ‘assisted’ protein targets, which also had distance restraints available. Although the low-resolution topology search module was able to sample models with a global distance test total score (GDT_TS) value greater than 30% for twelve out of twenty proteins, frequently it was not possible to select the most accurate models for refinement, resulting in a general decay of model quality over the course of the prediction pipeline. In this study, we provide a detailed overall analysis, study one target protein in more detail as it travels through the protein structure prediction pipeline, and evaluate the impact of limited experimental data.


Journal of Structural Biology | 2016

The unexpected structure of the designed protein Octarellin V.1 forms a challenge for protein structure prediction tools.

Maximiliano Figueroa; Mike Sleutel; Marylène Vandevenne; Gregory Parvizi; Sophie Attout; Olivier Jacquin; Julie Vandenameele; Axel W. Fischer; Christian Damblon; Erik Goormaghtigh; Marie Valerio-Lepiniec; Agathe Urvoas; D. Durand; Els Pardon; Jan Steyaert; Philippe Minard; Dominique Maes; Jens Meiler; André Matagne; Joseph Martial; Cécile Van de Weerdt

Despite impressive successes in protein design, designing a well-folded protein of more 100 amino acids de novo remains a formidable challenge. Exploiting the promising biophysical features of the artificial protein Octarellin V, we improved this protein by directed evolution, thus creating a more stable and soluble protein: Octarellin V.1. Next, we obtained crystals of Octarellin V.1 in complex with crystallization chaperons and determined the tertiary structure. The experimental structure of Octarellin V.1 differs from its in silico design: the (αβα) sandwich architecture bears some resemblance to a Rossman-like fold instead of the intended TIM-barrel fold. This surprising result gave us a unique and attractive opportunity to test the state of the art in protein structure prediction, using this artificial protein free of any natural selection. We tested 13 automated webservers for protein structure prediction and found none of them to predict the actual structure. More than 50% of them predicted a TIM-barrel fold, i.e. the structure we set out to design more than 10years ago. In addition, local software runs that are human operated can sample a structure similar to the experimental one but fail in selecting it, suggesting that the scoring and ranking functions should be improved. We propose that artificial proteins could be used as tools to test the accuracy of protein structure prediction algorithms, because their lack of evolutionary pressure and unique sequences features.


Journal of Chemical Information and Modeling | 2016

Accurate Prediction of Contact Numbers for Multi-Spanning Helical Membrane Proteins

Bian Li; Jeffrey L. Mendenhall; Elizabeth Dong Nguyen; Brian E. Weiner; Axel W. Fischer; Jens Meiler

Prediction of the three-dimensional (3D) structures of proteins by computational methods is acknowledged as an unsolved problem. Accurate prediction of important structural characteristics such as contact number is expected to accelerate the otherwise slow progress being made in the prediction of 3D structure of proteins. Here, we present a dropout neural network-based method, TMH-Expo, for predicting the contact number of transmembrane helix (TMH) residues from sequence. Neuronal dropout is a strategy where certain neurons of the network are excluded from back-propagation to prevent co-adaptation of hidden-layer neurons. By using neuronal dropout, overfitting was significantly reduced and performance was noticeably improved. For multi-spanning helical membrane proteins, TMH-Expo achieved a remarkable Pearson correlation coefficient of 0.69 between predicted and experimental values and a mean absolute error of only 1.68. In addition, among those membrane protein-membrane protein interface residues, 76.8% were correctly predicted. Mapping of predicted contact numbers onto structures indicates that contact numbers predicted by TMH-Expo reflect the exposure patterns of TMHs and reveal membrane protein-membrane protein interfaces, reinforcing the potential of predicted contact numbers to be used as restraints for 3D structure prediction and protein-protein docking. TMH-Expo can be accessed via a Web server at www.meilerlab.org .


Proteins | 2017

Improving prediction of helix-helix packing in membrane proteins using predicted contact numbers as restraints: Structure Prediction of Membrane Proteins Aided by Contact Numbers

Bian Li; Jeffrey L. Mendenhall; Elizabeth Dong Nguyen; Brian E. Weiner; Axel W. Fischer; Jens Meiler

One of the challenging problems in tertiary structure prediction of helical membrane proteins (HMPs) is the determination of rotation of α‐helices around the helix normal. Incorrect prediction of helix rotations substantially disrupts native residue–residue contacts while inducing only a relatively small effect on the overall fold. We previously developed a method for predicting residue contact numbers (CNs), which measure the local packing density of residues within the protein tertiary structure. In this study, we tested the idea of incorporating predicted CNs as restraints to guide the sampling of helix rotation. For a benchmark set of 15 HMPs with simple to rather complicated folds, the average contact recovery (CR) of best‐sampled models was improved for all targets, the likelihood of sampling models with CR greater than 20% was increased for 13 targets, and the average RMSD100 of best‐sampled models was improved for 12 targets. This study demonstrated that explicit incorporation of CNs as restraints improves the prediction of helix–helix packing. Proteins 2017; 85:1212–1221.


ACS Omega | 2017

Structure and Dynamics of Type III Secretion Effector Protein ExoU As determined by SDSL-EPR Spectroscopy in Conjunction with De Novo Protein Folding

Axel W. Fischer; David M. Anderson; Maxx H. Tessmer; Dara W. Frank; Jimmy B. Feix; Jens Meiler

ExoU is a 74 kDa cytotoxin that undergoes substantial conformational changes as part of its function, that is, it has multiple thermodynamically stable conformations that interchange depending on its environment. Such flexible proteins pose unique challenges to structural biology: (1) not only is it often difficult to determine structures by X-ray crystallography for all biologically relevant conformations because of the flat energy landscape (2) but also experimental conditions can easily perturb the biologically relevant conformation. The first challenge can be overcome by applying orthogonal structural biology techniques that are capable of observing alternative, biologically relevant conformations. The second challenge can be addressed by determining the structure in the same biological state with two independent techniques under different experimental conditions. If both techniques converge to the same structural model, the confidence that an unperturbed biologically relevant conformation is observed increases. To this end, we determine the structure of the C-terminal domain of the effector protein, ExoU, from data obtained by electron paramagnetic resonance spectroscopy in conjunction with site-directed spin labeling and in silico de novo structure determination. Our protocol encompasses a multimodule approach, consisting of low-resolution topology sampling, clustering, and high-resolution refinement. The resulting model was compared with an ExoU model in complex with its chaperone SpcU obtained previously by X-ray crystallography. The two models converged to a minimal RMSD100 of 3.2 Å, providing evidence that the unbound structure of ExoU matches the fold observed in complex with SpcU.


Proteins | 2015

BCL::MP-Fold: membrane protein structure prediction guided by EPR restraints

Axel W. Fischer; Nathan Alexander; Nils Woetzel; Mert Karakaş; Brian E. Weiner; Jens Meiler

Collaboration


Dive into the Axel W. Fischer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bian Li

Vanderbilt University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge