Aya D. Pusic
University of Chicago
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Aya D. Pusic.
Cell | 2011
Nadya Kondrashov; Aya D. Pusic; Craig R. Stumpf; Kunihiko Shimizu; Andrew C. Hsieh; Shifeng Xue; Junko Ishijima; Toshihiko Shiroishi; Maria Barna
Historically, the ribosome has been viewed as a complex ribozyme with constitutive rather than regulatory capacity in mRNA translation. Here we identify mutations of the Ribosomal Protein L38 (Rpl38) gene in mice exhibiting surprising tissue-specific patterning defects, including pronounced homeotic transformations of the axial skeleton. In Rpl38 mutant embryos, global protein synthesis is unchanged; however the translation of a select subset of Homeobox mRNAs is perturbed. Our data reveal that RPL38 facilitates 80S complex formation on these mRNAs as a regulatory component of the ribosome to confer transcript-specific translational control. We further show that Rpl38 expression is markedly enriched in regions of the embryo where loss-of-function phenotypes occur. Unexpectedly, a ribosomal protein (RP) expression screen reveals dynamic regulation of individual RPs within the vertebrate embryo. Collectively, these findings suggest that RP activity may be highly regulated to impart a new layer of specificity in the control of gene expression and mammalian development.
Nature | 2008
Maria Barna; Aya D. Pusic; Ornella Zollo; Maria Da Costa; Nadya Kondrashov; Eduardo M. Rego; Pulivarthi H. Rao; Davide Ruggero
The Myc oncogene regulates the expression of several components of the protein synthetic machinery, including ribosomal proteins, initiation factors of translation, RNA polymerase III and ribosomal DNA. Whether and how increasing the cellular protein synthesis capacity affects the multistep process leading to cancer remains to be addressed. Here we use ribosomal protein heterozygote mice as a genetic tool to restore increased protein synthesis in Eμ-Myc/+ transgenic mice to normal levels, and show that the oncogenic potential of Myc in this context is suppressed. Our findings demonstrate that the ability of Myc to increase protein synthesis directly augments cell size and is sufficient to accelerate cell cycle progression independently of known cell cycle targets transcriptionally regulated by Myc. In addition, when protein synthesis is restored to normal levels, Myc-overexpressing precancerous cells are more efficiently eliminated by programmed cell death. Our findings reveal a new mechanism that links increases in general protein synthesis rates downstream of an oncogenic signal to a specific molecular impairment in the modality of translation initiation used to regulate the expression of selective messenger RNAs. We show that an aberrant increase in cap-dependent translation downstream of Myc hyperactivation specifically impairs the translational switch to internal ribosomal entry site (IRES)-dependent translation that is required for accurate mitotic progression. Failure of this translational switch results in reduced mitotic-specific expression of the endogenous IRES-dependent form of Cdk11 (also known as Cdc2l and PITSLRE), which leads to cytokinesis defects and is associated with increased centrosome numbers and genome instability in Eμ-Myc/+ mice. When accurate translational control is re-established in Eμ-Myc/+ mice, genome instability is suppressed. Our findings demonstrate how perturbations in translational control provide a highly specific outcome for gene expression, genome stability and cancer initiation that have important implications for understanding the molecular mechanism of cancer formation at the post-genomic level.
Glia | 2014
Aya D. Pusic; Richard P. Kraig
Although commonly considered a disease of white matter, gray matter demyelination is increasingly recognized as an important component of multiple sclerosis (MS) pathogenesis, particularly in the secondary progressive disease phase. Extent of damage to gray matter is strongly correlated to decline in memory and cognitive dysfunction in MS patients. Aging likewise occurs with cognitive decline from myelin loss, and age‐associated failure to remyelinate significantly contributes to MS progression. However, recent evidence demonstrates that parabiotic exposure of aged animals to a youthful systemic milieu can promote oligodendrocyte precursor cell (OPC) differentiation and improve remyelination. In the current study, we focus on this potential for stimulating remyelination, and show it involves serum exosomes that increase OPCs and their differentiation into mature myelin‐producing cells—both under control conditions and after acute demyelination. Environmental enrichment (EE) of aging animals produced exosomes that mimicked this promyelinating effect. Additionally, stimulating OPC differentiation via exosomes derived from environmentally enriched animals is unlikely to deplete progenitors, as EE itself promotes proliferation of neural stem cells. We found that both young and EE serum‐derived exosomes were enriched in miR‐219, which is necessary and sufficient for production of myelinating oligodendrocytes by reducing the expression of inhibitory regulators of differentiation. Accordingly, protein transcript levels of these miR‐219 target mRNAs decreased following exosome application to slice cultures. Finally, nasal administration of exosomes to aging rats also enhanced myelination. Thus, peripheral circulating cells in young or environmentally enriched animals produce exosomes that may be a useful therapy for remyelination. GLIA 2014;62:284–299
Journal of Neuroimmunology | 2014
Aya D. Pusic; Kae M. Pusic; Benjamin L.L. Clayton; Richard P. Kraig
Dendritic cells (DCs) release exosomes with different characteristics based on stimulus. Here, we showed that DC cultures stimulated with low-level IFNγ released exosomes (IFNγ-DC-Exos) that contained microRNA species that can increase baseline myelination, reduce oxidative stress, and improve remyelination following acute lysolecithin-induced demyelination. Furthermore, nasally administered IFNγ-DC-Exos increased CNS myelination in vivo. IFNγ-DC-Exos were preferentially taken up by oligodendrocytes, suggesting that they directly impact oligodendrocytes to increase myelination. Thus, our results show great potential for use of these IFNγ-DC-Exos as a therapeutic to promote remyelination in multiple sclerosis and dysmyelinating syndromes.
Glia | 2014
Kae M. Pusic; Aya D. Pusic; Jordan Kemme; Richard P. Kraig
Microglia play an important role in fine‐tuning neuronal activity. In part, this involves their production of tumor necrosis factor‐alpha (TNFα), which increases neuronal excitability. Excessive synaptic activity is necessary to initiate spreading depression (SD). Increased microglial production of proinflammatory cytokines promotes initiation of SD, which, when recurrent, may play a role in conversion of episodic to high frequency and chronic migraine. Previous work shows that this potentiation of SD occurs through increased microglial production of TNFα and reactive oxygen species, both of which are associated with an M1‐skewed microglial population. Hence, we explored the role of microglia and their M1 polarization in SD initiation. Selective ablation of microglia from rat hippocampal slice cultures confirmed that microglia are essential for initiation of SD. Application of minocycline to dampen M1 signaling led to increased SD threshold. In addition, we found that SD threshold was increased in rats exposed to environmental enrichment. These rats had increased neocortical levels of interleukin‐11 (IL‐11), which decreases TNFα signaling and polarized microglia to an M2a‐dominant phenotype. M2a microglia reduce proinflammatory signaling and increase production of anti‐inflammatory cytokines, and therefore may protect against SD. Nasal administration of IL‐11 to mimic effects of environmental enrichment likewise increased M2a polarization and increased SD threshold, an effect also seen in vitro. Similarly, application of conditioned medium from M2a polarized primary microglia to slice cultures also increased SD threshold. Thus, microglia and their polarization state play an essential role in SD initiation, and perhaps by extension migraine with aura and migraine. GLIA 2014;62:1176–1194
Cellular and Molecular Neurobiology | 2016
Kae M. Pusic; Aya D. Pusic; Richard P. Kraig
Environmental enrichment (EE) consists of increased physical, intellectual, and social activity, and has wide-ranging effects, including enhancing cognition, learning and memory, and motor coordination. Animal studies have demonstrated that EE improves outcome of brain trauma and neurodegenerative disorders, including demyelinating diseases like multiple sclerosis, making it a promising therapeutic option. However, the complexity of applying a robust EE paradigm makes clinical use difficult. A better understanding of the signaling involved in EE-based neuroprotection may allow for development of effective mimetics as an alternative. In prior work, we found that exosomes isolated from the serum of rats exposed to EE impact CNS myelination. Exosomes are naturally occurring nanovesicles containing mRNA, miRNA, and protein, which play important roles in cell function, disease, and immunomodulation. When applied to hippocampal slice cultures or nasally administered to naïve rats, EE-serum exosomes significantly increase myelin content, oligodendrocyte precursor (OPC) and neural stem cell levels, and reduce oxidative stress (OS). We found that rat EE exosomes were enriched in miR-219, which is necessary and sufficient for OPC differentiation into myelinating cells. Thus, peripherally produced exosomes may be a useful therapy for remyelination. Here, we aim to better characterize the impact of EE on CNS health and to determine the cellular source of nutritive exosomes found in serum. We found that exosomes isolated from various circulating immune cell types all increased slice culture myelin content, contained miR-219, and reduced OS, suggesting that EE globally alters immune function in a way that supports brain health.
Experimental Neurology | 2012
Marilyn J. Cipolla; Aya D. Pusic; Yelena Y. Grinberg; Abbie C. Chapman; Matthew E. Poynter; Richard P. Kraig
Preeclampsia is a hypertensive disorder of pregnancy that affects many organs including the brain. Neurological complications occur during preeclampsia, the most serious of which is seizure known as eclampsia. Although preeclampsia can precede the eclamptic seizure, it often occurs during normal pregnancy, suggesting that processes associated with normal pregnancy can promote neuronal excitability. Here we investigated whether circulating inflammatory mediators that are elevated late in gestation when seizure also occurs are hyperexcitable to neuronal tissue. Evoked field potentials were measured in hippocampal slices in which control horse serum that slices are normally grown in, was replaced with serum from nonpregnant or late-pregnant Wistar rats for 48 h. We found that serum from pregnant, but not nonpregnant rats, caused hyperexcitability to hippocampal neurons and seizure activity that was abrogated by inhibition of tumor necrosis factor alpha (TNFα) signaling. Additionally, application of TNFα mimicked this increased excitability. Pregnant serum also caused morphological changes in microglia characteristic of activation, and increased TNFα mRNA expression that was not seen with exposure to nonpregnant serum. However, TNFα protein was not found to be elevated in pregnant serum itself, suggesting that other circulating factors during pregnancy caused activation of hippocampal slice cells to produce a TNFα-mediated increase in neuronal excitability. Lastly, although pregnant serum caused neuroinflammation and hyperexcitability of hippocampal slices, it did not increase blood-brain barrier permeability, nor were pregnant rats from which the serum was taken undergoing seizure. Thus, the BBB has an important role in protecting the brain from circulating neuroinflammatory mediators that are hyperexcitable to the brain during pregnancy. These studies provide novel insight into the underlying cause of eclampsia without elevated blood pressure and the protective role of the BBB that prevents exposure of the brain to hyperexcitable factors.
Expert Review of Neurotherapeutics | 2014
Aya D. Pusic; Kae M. Pusic; Richard P. Kraig
Current treatment options for multiple sclerosis are limited and consist of immunosuppressors or agents to prevent immune infiltration of the brain. These therapies have potentially harmful side effects and do little to promote myelin repair. Instead, we suggest using exosomes, naturally occurring small vesicles that exert influence through the delivery of mRNA, microRNA and protein. Dendritic cells can be cultured from bone marrow and stimulated to release exosomes. When administered to the brain, these exosomes significantly increase myelination and improve remyelination following injury by prompting preoligodendrocytes to differentiate into myelin producing cells. Additionally, they are non-toxic and can easily cross the blood-brain barrier and, thus, have great potential as a therapeutic.
Journal of Visualized Experiments | 2011
Aya D. Pusic; Yelena Y. Grinberg; Heidi M. Mitchell; Richard P. Kraig
Migraine and its transformation to chronic migraine are healthcare burdens in need of improved treatment options. We seek to define how neural immune signaling modulates the susceptibility to migraine, modeled in vitro using spreading depression (SD), as a means to develop novel therapeutic targets for episodic and chronic migraine. SD is the likely cause of migraine aura and migraine pain. It is a paroxysmal loss of neuronal function triggered by initially increased neuronal activity, which slowly propagates within susceptible brain regions. Normal brain function is exquisitely sensitive to, and relies on, coincident low-level immune signaling. Thus, neural immune signaling likely affects electrical activity of SD, and therefore migraine. Pain perception studies of SD in whole animals are fraught with difficulties, but whole animals are well suited to examine systems biology aspects of migraine since SD activates trigeminal nociceptive pathways. However, whole animal studies alone cannot be used to decipher the cellular and neural circuit mechanisms of SD. Instead, in vitro preparations where environmental conditions can be controlled are necessary. Here, it is important to recognize limitations of acute slices and distinct advantages of hippocampal slice cultures. Acute brain slices cannot reveal subtle changes in immune signaling since preparing the slices alone triggers: pro-inflammatory changes that last days, epileptiform behavior due to high levels of oxygen tension needed to vitalize the slices, and irreversible cell injury at anoxic slice centers. In contrast, we examine immune signaling in mature hippocampal slice cultures since the cultures closely parallel their in vivo counterpart with mature trisynaptic function; show quiescent astrocytes, microglia, and cytokine levels; and SD is easily induced in an unanesthetized preparation. Furthermore, the slices are long-lived and SD can be induced on consecutive days without injury, making this preparation the sole means to-date capable of modeling the neuroimmune consequences of chronic SD, and thus perhaps chronic migraine. We use electrophysiological techniques and non-invasive imaging to measure neuronal cell and circuit functions coincident with SD. Neural immune gene expression variables are measured with qPCR screening, qPCR arrays, and, importantly, use of cDNA preamplification for detection of ultra-low level targets such as interferon-gamma using whole, regional, or specific cell enhanced (via laser dissection microscopy) sampling. Cytokine cascade signaling is further assessed with multiplexed phosphoprotein related targets with gene expression and phosphoprotein changes confirmed via cell-specific immunostaining. Pharmacological and siRNA strategies are used to mimic and modulate SD immune signaling.
Journal of extracellular vesicles | 2015
Peter J. Quesenberry; Jason M. Aliotta; Giovanni Camussi; Asim B. Abdel-Mageed; Sicheng Wen; Laura R. Goldberg; Huang-Ge Zhang; Ciro Tetta; Jeffrey L. Franklin; Robert J. Coffey; Kirsty Danielson; Vinita Subramanya; Ionita Ghiran; Saumya Das; Clark C. Chen; Kae M. Pusic; Aya D. Pusic; Devasis Chatterjee; Richard P. Kraig; Leonora Balaj; Mark S. Dooner
The NIH Extracellular RNA Communication Programs initiative on clinical utility of extracellular RNAs and therapeutic agents and developing scalable technologies is reviewed here. Background information and details of the projects are presented. The work has focused on modulation of target cell fate by extracellular vesicles (EVs) and RNA. Work on plant-derived vesicles is of intense interest, and non-mammalian sources of vesicles may represent a very promising source for different therapeutic approaches. Retro-viral-like particles are intriguing. Clearly, EVs share pathways with the assembly machinery of several other viruses, including human endogenous retrovirals (HERVs), and this convergence may explain the observation of viral-like particles containing viral proteins and nucleic acid in EVs. Dramatic effect on regeneration of damaged bone marrow, renal, pulmonary and cardiovascular tissue is demonstrated and discussed. These studies show restoration of injured cell function and the importance of heterogeneity of different vesicle populations. The potential for neural regeneration is explored, and the capacity to promote and reverse neoplasia by EV exposure is described. The tremendous clinical potential of EVs underlies many of these projects, and the importance of regulatory issues and the necessity of general manufacturing production (GMP) studies for eventual clinical trials are emphasized. Clinical trials are already being pursued and should expand dramatically in the near future.