Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Aya Kurosawa is active.

Publication


Featured researches published by Aya Kurosawa.


Journal of Biological Chemistry | 2008

NK314, a topoisomerase II inhibitor that specifically targets the α isoform

Eriko Toyoda; Shigehide Kagaya; Ian G. Cowell; Aya Kurosawa; Keiichi Kamoshita; Kiyohiro Nishikawa; Susumu Iiizumi; Hideki Koyama; Caroline A. Austin; Noritaka Adachi

Topoisomerase II (Top2) is a ubiquitous nuclear enzyme that relieves torsional stress in chromosomal DNA during various cellular processes. Agents that target Top2, involving etoposide, doxorubicin, and mitoxantrone, are among the most effective anticancer drugs used in the clinic. Mammalian cells possess two genetically distinct Top2 isoforms, both of which are the target of these agents. Top2α is essential for cell proliferation and is highly expressed in vigorously growing cells, whereas Top2β is nonessential for growth and has recently been implicated in treatment-associated secondary malignancies, highlighting the validity of a Top2α-specific drug for future cancer treatment; however, no such agent has been hitherto reported. Here we show that NK314, a novel synthetic benzo[c]phenanthridine alkaloid, targets Top2α and not Top2β in vivo. Unlike other Top2 inhibitors, NK314 induces Top2-DNA complexes and double-strand breaks (DSBs) in an α isoform-specific manner. Heterozygous disruption of the human TOP2α gene confers increased NK314 resistance, whereas TOP2β homozygous knock-out cells display increased NK314 sensitivity, indicating that the α isoform is the cellular target. We further show that the absence of Top2β does not alleviate NK314 hypersensitivity of cells deficient in non-homologous end-joining, a critical pathway for repairing Top2-mediated DSBs. Our results indicate that NK314 acts as a Top2α-specific poison in mammalian cells, with excellent potential as an efficacious and safe chemotherapeutic agent. We also suggest that a series of human knock-out cell lines are useful in assessing DNA damage and repair induced by potential topoisomerase-targeting agents.


Nucleic Acids Research | 2008

Impact of non-homologous end-joining deficiency on random and targeted DNA integration: implications for gene targeting

Susumu Iiizumi; Aya Kurosawa; Sairei So; Yasuyuki Ishii; Yuichi Chikaraishi; Ayako Ishii; Hideki Koyama; Noritaka Adachi

In higher animal cells, the principal limitation of gene-targeting technology is the extremely low efficiency of targeted integration, which occurs three to four orders of magnitude less frequently than random integration. Assuming that random integration mechanistically involves non-homologous end-joining (NHEJ), inactivation of this pathway should reduce random integration and may enhance gene targeting. To test this possibility, we examined the frequencies of random and targeted integration in NHEJ-deficient chicken DT40 and human Nalm-6 cell lines. As expected, loss of NHEJ resulted in drastically reduced random integration in DT40 cells. Unexpectedly, however, this was not the case for Nalm-6 cells, indicating that NHEJ is not the sole mechanism of random integration. Nevertheless, we present evidence that NHEJ inactivation can lead to enhanced gene targeting through a reduction of random integration and/or an increase in targeted integration by homologous recombination. Most intriguingly, our results show that, in the absence of functional NHEJ, random integration of targeting vectors occurs more frequently than non-targeting vectors (harboring no or little homology to the host genome), implying that suppression of NHEJ-independent random integration events is needed to greatly enhance gene targeting in animal cells.


Journal of Experimental Medicine | 2012

Artemis C-terminal region facilitates V(D)J recombination through its interactions with DNA Ligase IV and DNA-PKcs

Shruti Malu; Pablo De Ioannes; Mikhail Kozlov; Marsha Greene; Dailia Francis; Mary Hanna; Jesse Pena; Carlos R. Escalante; Aya Kurosawa; Hediye Erdjument-Bromage; Paul Tempst; Noritaka Adachi; Paolo Vezzoni; Anna Villa; Aneel K. Aggarwal; Patricia Cortes

Interactions of Artemis with DNA Ligase IV and DNA-PKcs are required for efficient coding joint formation.


Methods of Molecular Biology | 2008

Highly Proficient Gene Targeting by Homologous Recombination in the Human Pre-B Cell Line Nalm-6

Noritaka Adachi; Aya Kurosawa; Hideki Koyama

Gene targeting provides a powerful means for studying gene function by a reverse genetic approach. Despite recent rapid progress in gene knockdown technologies, gene knockout studies using human somatic cells will be of greater importance for analyzing the functions of human genes in greater detail. Although the frequency of gene targeting is typically very low in human cultured cells, we have recently shown that a human precursor B cell line, Nalm-6, exceptionally allows for high-efficiency gene targeting by homologous recombination. In addition, we have developed a quick and simplified method to construct gene-targeting vectors, which is applicable to all sequenced organisms as well as embryonic stem cells. The combination of the simplified vector construction technology and the highly efficient gene-knockout system using Nalm-6 cells has enabled us to disrupt virtually any locus of the human genome within one month. Our system will greatly facilitate gene-knockout studies in human cells.


Molecular and Cellular Biology | 2013

Both CpG Methylation and Activation-Induced Deaminase Are Required for the Fragility of the Human bcl-2 Major Breakpoint Region: Implications for the Timing of the Breaks in the t(14;18) Translocation

Xiaoping Cui; Zhengfei Lu; Aya Kurosawa; Lars Klemm; Andrew Tm Bagshaw; Albert G. Tsai; Neil J. Gemmell; Markus Müschen; Noritaka Adachi; Chih-Lin Hsieh; Michael R. Lieber

ABSTRACT The t(14;18) chromosomal translocation typically involves breakage at the bcl-2 major breakpoint region (MBR) to cause human follicular lymphoma. A theory to explain the striking propensity of the MBR breaks at three CpG clusters within the 175-bp MBR region invoked activation-induced deaminase (AID). In a test of that theory, we used here minichromosomal substrates in human pre-B cell lines. Consistent with the essential elements of the theory, we found that the MBR breakage process is indeed highly dependent on DNA methylation at the CpG sites and highly dependent on the AID enzyme to create lesions at peak locations within the MBR. Interestingly, breakage of the phosphodiester bonds at the AID-initiated MBR lesions is RAG dependent, but, unexpectedly, most are also dependent on Artemis. We found that Artemis is capable of nicking small heteroduplex structures and is even able to nick single-base mismatches. This raises the possibility that activated Artemis, derived from the unjoined D to JH DNA ends at the IgH locus on chromosome 14, nicks AID-generated TG mismatches at methyl CpG sites, and this would explain why the breaks at the chromosome 18 MBR occur within the same time window as those on chromosome 14.


PLOS ONE | 2013

DNA ligase IV and artemis act cooperatively to suppress homologous recombination in human cells: implications for DNA double-strand break repair.

Aya Kurosawa; Shinta Saito; Sairei So; Mitsumasa Hashimoto; Kuniyoshi Iwabuchi; Haruka Watabe; Noritaka Adachi

Nonhomologous end-joining (NHEJ) and homologous recombination (HR) are two major pathways for repairing DNA double-strand breaks (DSBs); however, their respective roles in human somatic cells remain to be elucidated. Here we show using a series of human gene-knockout cell lines that NHEJ repairs nearly all of the topoisomerase II- and low-dose radiation-induced DNA damage, while it negatively affects survival of cells harbouring replication-associated DSBs. Intriguingly, we find that loss of DNA ligase IV, a critical NHEJ ligase, and Artemis, an NHEJ factor with endonuclease activity, independently contribute to increased resistance to replication-associated DSBs. We also show that loss of Artemis alleviates hypersensitivity of DNA ligase IV-null cells to low-dose radiation- and topoisomerase II-induced DSBs. Finally, we demonstrate that Artemis-null human cells display increased gene-targeting efficiencies, particularly in the absence of DNA ligase IV. Collectively, these data suggest that DNA ligase IV and Artemis act cooperatively to promote NHEJ, thereby suppressing HR. Our results point to the possibility that HR can only operate on accidental DSBs when NHEJ is missing or abortive, and Artemis may be involved in pathway switching from incomplete NHEJ to HR.


Current Genetics | 2007

Overexpression of HAM1 gene detoxifies 5-bromodeoxyuridine in the yeast Saccharomyces cerevisiae

Shinichi Takayama; Michihiko Fujii; Aya Kurosawa; Noritaka Adachi; Dai Ayusawa

Abstract5-Bromodeoxyuridine (BrdU) is known to modulate expression of particular genes, and eventually arrest cell division in mammalian and yeast cells. To study a molecular basis for these phenomena, we adopted a genetic approach with a yeast cell system. We screened multicopy suppressor genes that confer resistance to BrdU with a thymidine-auxotrophic strain of the yeast Saccharomyces cerevisiae. One of such genes was found to encode Ham1 protein, which was originally identified as a possible triphosphatase for N-6-hydroxylaminopurine triphosphate. Consistent with this, overexpression of the HAM1 gene reversed growth arrest caused by BrdU, and blocked incorporation of BrdU into genomic DNA. On the contrary, disruption of the gene sensitized cells to BrdU. A crude extract from Ham1-overproducing cells showed a high activity to hydrolyze BrdUTP to BrdUMP and pyrophosphate in addition to abnormal purine nucleotides. Purified recombinant Ham1 protein showed the same activity. These results demonstrate that Ham1 protein detoxifies abnormal pyrimidine as well as purine nucleotides.


PLOS ONE | 2014

Analysis of the Role of Homology Arms in Gene-Targeting Vectors in Human Cells

Ayako Ishii; Aya Kurosawa; Shinta Saito; Noritaka Adachi

Random integration of targeting vectors into the genome is the primary obstacle in human somatic cell gene targeting. Non-homologous end-joining (NHEJ), a major pathway for repairing DNA double-strand breaks, is thought to be responsible for most random integration events; however, absence of DNA ligase IV (LIG4), the critical NHEJ ligase, does not significantly reduce random integration frequency of targeting vector in human cells, indicating robust integration events occurring via a LIG4-independent mechanism. To gain insights into the mechanism and robustness of LIG4-independent random integration, we employed various types of targeting vectors to examine their integration frequencies in LIG4-proficient and deficient human cell lines. We find that the integration frequency of targeting vector correlates well with the length of homology arms and with the amount of repetitive DNA sequences, especially SINEs, present in the arms. This correlation was prominent in LIG4-deficient cells, but was also seen in LIG4-proficient cells, thus providing evidence that LIG4-independent random integration occurs frequently even when NHEJ is functionally normal. Our results collectively suggest that random integration frequency of conventional targeting vectors is substantially influenced by homology arms, which typically harbor repetitive DNA sequences that serve to facilitate LIG4-independent random integration in human cells, regardless of the presence or absence of functional NHEJ.


PLOS ONE | 2013

Interference in DNA Replication Can Cause Mitotic Chromosomal Breakage Unassociated with Double-Strand Breaks

Mari Fujita; Hiroyuki Sasanuma; Kimiyo N. Yamamoto; Hiroshi Harada; Aya Kurosawa; Noritaka Adachi; Masato Omura; Masahiro Hiraoka; Shunichi Takeda; Kouji Hirota

Morphological analysis of mitotic chromosomes is used to detect mutagenic chemical compounds and to estimate the dose of ionizing radiation to be administered. It has long been believed that chromosomal breaks are always associated with double-strand breaks (DSBs). We here provide compelling evidence against this canonical theory. We employed a genetic approach using two cell lines, chicken DT40 and human Nalm-6. We measured the number of chromosomal breaks induced by three replication-blocking agents (aphidicolin, 5-fluorouracil, and hydroxyurea) in DSB-repair-proficient wild-type cells and cells deficient in both homologous recombination and nonhomologous end-joining (the two major DSB-repair pathways). Exposure of cells to the three replication-blocking agents for at least two cell cycles resulted in comparable numbers of chromosomal breaks for RAD54−/−/KU70−/− DT40 clones and wild-type cells. Likewise, the numbers of chromosomal breaks induced in RAD54−/−/LIG4−/− Nalm-6 clones and wild-type cells were also comparable. These data indicate that the replication-blocking agents can cause chromosomal breaks unassociated with DSBs. In contrast with DSB-repair-deficient cells, chicken DT40 cells deficient in PIF1 or ATRIP, which molecules contribute to the completion of DNA replication, displayed higher numbers of mitotic chromosomal breaks induced by aphidicolin than did wild-type cells, suggesting that single-strand gaps left unreplicated may result in mitotic chromosomal breaks.


Gene | 2012

Nucleofection-based gene targeting in human pre-B cells.

Aya Kurosawa; Shinta Saito; Mikako Mori; Noritaka Adachi

Electroporation is a powerful and convenient means for transfection of nonviral vectors into mammalian cells, providing an essential tool for numerous applications including gene targeting via homologous recombination. Recent evidence clearly suggests that high-efficiency gene transfer can be achieved in most cell lines by nucleofection, an electroporation-based transfection method that allows transfected vectors to directly enter the nucleus. In this paper, we analyze the effectiveness of nucleofection for gene targeting using human pre-B cells. For this, we tested 93 different transfection conditions, and found several conditions that gave high (~80%) transfection efficiency with low cytotoxicity (~70% survival rate). Remarkably, under the optimal nucleofection conditions, the gene-targeting efficiency was ~2-5-fold higher than that achieved with conventional electroporation methods. We also found that nucleofection conditions with high transfection efficiency and low cytotoxicity tend to provide high gene-targeting efficiency. Our results provide significant implications for gene targeting, and suggest that nucleofection-based nonviral gene transfer is useful for systematic generation of human gene-knockout cell lines.

Collaboration


Dive into the Aya Kurosawa's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shinta Saito

Yokohama City University

View shared research outputs
Top Co-Authors

Avatar

Eriko Toyoda

Yokohama City University

View shared research outputs
Top Co-Authors

Avatar

Hideki Koyama

Kihara Institute for Biological Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Susumu Iiizumi

Kihara Institute for Biological Research

View shared research outputs
Top Co-Authors

Avatar

Ayako Ishii

Yokohama City University

View shared research outputs
Top Co-Authors

Avatar

Dai Ayusawa

Kihara Institute for Biological Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kuniyoshi Iwabuchi

Kanazawa Medical University

View shared research outputs
Researchain Logo
Decentralizing Knowledge