Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ayaki Nakamoto is active.

Publication


Featured researches published by Ayaki Nakamoto.


Zoological Science | 2001

Segmentation in Annelids: Cellular and Molecular Basis for Metameric Body Plan

Takashi Shimizu; Ayaki Nakamoto

Abstract Annelids are segmented animals that display a high degree of metamerism in their body plan. This review describes the segmentation of clitellate annelids (i.e., oligochaetes and leeches) and polychaetes with special reference to cellular and molecular mechanisms elaborating the metameric body plan. In clitellate embryos, segments arise from five bilateral pairs of longitudinal coherent columns (bandlets) of primary blast cells that are generated by five bilateral pairs of embryonic stem cells called teloblasts (M, N, O, P and Q). Recent cell-ablation experiments have suggested that ectodermal segmentation in clitellates consists of two stages, autonomous morphogenesis of each bandlet leading to generation of distinct cell clumps (i.e., segmental elements; SEs) and the ensuing mesoderm-dependent alignment of separated SEs. In the N and Q lineages, SEs are each comprised of clones of two consecutive primary blast cells. In contrast, in the O and P lineages, individual blast cell clones are distributed across SE boundaries; each SE is a mixture of a part of a more-anterior clone and a part of the next more-posterior clone. In contrast, the metameric segmentation in the mesoderm (M lineage) is a one-step process in that it arises from an initially simple organization (i.e., a linear series) of primary blast cells, which individually serve as a founder cell of each segment; the boundary between mesodermal segments is determined autonomously. Cell-autonomous properties of primary blast cells have also been suggested in two fundamental aspects of segmentation, viz., specification of segment polarity and determination of segmental identities. Recent cell-ablation and -transplantation studies have suggested that segmental identities in primary blast cells derived from M teloblasts are determined according to the genealogical position in the M lineage and that the M teloblast possesses a developmental program through which the sequence of blast cell identities is determined. It is unlikely that either a segment polarity gene engrailed or Hox genes are involved in specifying polarity or identities of segments of clitellates, since these genes (in leeches) are reportedly expressed long after the establishment of these segmental properties. As in clitellates, segments in polychaetes arise from descendants of teloblasts located in a posterior growth zone, but it is only during trochophore larval stages that overt segmental organization becomes recognizable. At present, it is not known how the posterior growth zone generates trunk segments either during larval stages or after metamorphosis. However, the recent finding that Hox genes are expressed in the growth zone (probably in teloblasts) suggests that segmentation mechanisms in polychaetes are distinct from those in clitellates.


Developmental Biology | 2011

Lineage analysis of micromere 4d, a super-phylotypic cell for Lophotrochozoa, in the leech Helobdella and the sludgeworm Tubifex.

Stephanie E. Gline; Ayaki Nakamoto; Sung-Jin Cho; Candace Chi; David A. Weisblat

The super-phylum Lophotrochozoa contains the plurality of extant animal phyla and exhibits a corresponding diversity of adult body plans. Moreover, in contrast to Ecdysozoa and Deuterostomia, most lophotrochozoans exhibit a conserved pattern of stereotyped early divisions called spiral cleavage. In particular, bilateral mesoderm in most lophotrochozoan species arises from the progeny of micromere 4d, which is assumed to be homologous with a similar cell in the embryo of the ancestral lophotrochozoan, more than 650 million years ago. Thus, distinguishing the conserved and diversified features of cell fates in the 4d lineage among modern spiralians is required to understand how lophotrochozoan diversity has evolved by changes in developmental processes. Here we analyze cell fates for the early progeny of the bilateral daughters (M teloblasts) of micromere 4d in the leech Helobdella sp. Austin, a clitellate annelid. We show that the first six progeny of the M teloblasts (em1-em6) contribute five different sets of progeny to non-segmental mesoderm, mainly in the head and in the lining of the digestive tract. The latter feature, associated with cells em1 and em2 in Helobdella, is seen with the M teloblast lineage in a second clitellate species, the sludgeworm Tubifex tubifex and, on the basis of previously published work, in the initial progeny of the M teloblast homologs in molluscan species, suggesting that it may be an ancestral feature of lophotrochozoan development.


Development | 2011

Secondary embryonic axis formation by transplantation of D quadrant micromeres in an oligochaete annelid

Ayaki Nakamoto; Lisa M. Nagy; Takashi Shimizu

Among spiral cleaving embryos (e.g. mollusks and annelids), it has long been known that one blastomere at the four-cell stage, the D cell, and its direct descendants play an important role in axial pattern formation. Various studies have suggested that the D quadrant acts as the organizer of the embryonic axes in annelids, although this has never been demonstrated directly. Here we show that D quadrant micromeres (2d and 4d) of the oligochaete annelid Tubifex tubifex are essential for embryonic axis formation. When 2d and 4d were ablated the embryo developed into a rounded cell mass covered with an epithelial cell sheet. To examine whether 2d and 4d are sufficient for axis formation they were transplanted to an ectopic position in an otherwise intact embryo. The reconstituted embryo formed a secondary embryonic axis with a duplicated head and/or tail. Cell lineage analyses showed that neuroectoderm and mesoderm along the secondary axis were derived from the transplanted D quadrant micromeres and not from the host embryo. However, endodermal tissue along the secondary axis originated from the host embryo. Interestingly, when either 2d or 4d was transplanted separately to host embryos, the reconstituted embryos failed to form a secondary axis, suggesting that both 2d and 4d are required for secondary axis formation. Thus, the Tubifex D quadrant micromeres have the ability to organize axis formation, but they lack the ability to induce neuroectodermal tissues, a characteristic common to chordate primary embryonic organizers.


CSH Protocols | 2009

The Snail Ilyanassa: A Reemerging Model for Studies in Development

Maey Gharbiah; James Cooley; Esther M. Leise; Ayaki Nakamoto; Jeremy S. Rabinowitz; J. David Lambert; Lisa M. Nagy

Ilyanassa obsoleta is a marine gastropod that is a long-standing and very useful model for studies of embryonic development. It is especially important as a model for the spiralian development program, a distinctive mode of early development shared by a large group of animal phyla, but poorly understood. Ilyanassa adults are readily obtainable and easy to keep in the laboratory, and they produce large numbers of embryos throughout most of the year. The embryos are amenable to classic embryological manipulation techniques as well as a growing number of molecular approaches. In this article, we present an overview of aspects of its biology and use as a model organism.


Development Genes and Evolution | 2013

Analysis of ciliary band formation in the mollusc Ilyanassa obsoleta.

Maey Gharbiah; Ayaki Nakamoto; Lisa M. Nagy

Two primary ciliary bands, the prototroch and metatroch, are required for locomotion and in the feeding larvae of many spiralians. The metatroch has been reported to have different cellular origins in the molluscs Crepidula fornicata and Ilyanassa obsoleta, as well as in the annelid Polygordius lacteus, consistent with multiple independent origins of the spiralian metatroch. Here, we describe in further detail the cell lineage of the ciliary bands in the gastropod mollusc I. obsoleta using intracellular lineage tracing and the expression of an acetylated tubulin antigen that serves as a marker for ciliated cells. We find that the I. obsoleta metatroch is formed primarily by third quartet derivatives as well as a small number of second quartet derivatives. These results differ from the described metatrochal lineage in the mollusc C. fornicata that derives solely from the second quartet or the metatrochal lineage in the annelid P. lacteus that derives solely from the third quartet. The present study adds to a growing body of literature concerning the evolution of the metatroch and the plasticity of cell fates in homologous micromeres in spiralian embryos.


The International Journal of Developmental Biology | 2014

Developmental significance of D quadrant micromeres 2d and 4d in the oligochaete annelid Tubifex tubifex.

Takashi Shimizu; Ayaki Nakamoto

The annelidTubifex tubifex is a cosmopolitan freshwater oligochaete and a member of the Spiralia, a large group of invertebrate phyla displaying spiral development. Because its developing eggs are easily obtained in the laboratory, this animal has long been used as material for developmental studies, especially spiralian embryology. In spiralian embryos, it has long been known that one blastomere at the four-cell stage, the D cell, and its direct descendants play an important role in axial pattern formation. Various studies have suggested that the D quadrant functions as the organizer of the embryonic axes in molluscs and annelids, and it has recently been demonstrated that the D quadrant micromeres, 2d(11) and 4d, which had been transplanted to an ectopic position in an otherwise intact embryo induce a secondary embryonic axis to give rise to the formation of duplicated heads and/or tails. That 2d and 4d play a pivotal role in Tubifex embryonic development was first suggested from the classic cell-ablation experiments carried out in the early 1920s, and this has been confirmed by the recent cell-ablation/restoration experiments using cell-labeling with lineage tracers. These studies have also shown that in the operated embryos, none of the remaining cells can replace the missing 2d and 4d and that both 2d and 4d are determined as ectodermal and mesodermal precursors, respectively, at the time of their birth. The anteroposterior polarity of these micromeres is also specified at the time of their birth, suggesting that nascent 2d and 4d are specified in their axial properties as well as in cell fate decision.


Developmental Biology | 2013

Primordial germ cells in an oligochaete annelid are specified according to the birth rank order in the mesodermal teloblast lineage.

Yukie Kato; Ayaki Nakamoto; Inori Shiomi; Hajime Nakao; Takashi Shimizu

The primordial germ cells (PGCs) in the oligochaete annelid Tubifex tubifex are descentants of the mesodermal (M) teloblast and are located in the two midbody segments X and XI in which they serve as germline precursors forming the testicular gonad and the ovarian gonad, respectively. During embryogenesis, vasa-expressing cells (termed presumptive PGCs or pre-PGCs) emerge in a variable set of midbody segments including the genital segments (X and XI); at the end of embryogenesis, pre-PGCs are confined to the genital segments, where they become PGCs in the juvenile. Here, using live imaging of pre-PGCs, we have demonstrated that during Tubifex embryogenesis, pre-PGCs (defined by Vasa expression) stay in segments where they have emerged, suggesting that it is unlikely that pre-PGCs move intersegmentally during embryogenesis. Thus, it is apparent that pre-PGCs derived from the 10th and 11th M teloblast-derived primary m blast cells (designated m10 and m11) that give rise, respectively, to segments X and XI are specified in situ as PGCs and that those born in other segments become undetectable at the end of embryogenesis. To address the mechanisms for this segment-specific development of PGCs, we have performed a set of cell-transplantation experiments as well as cell-ablation experiments. When m10 and m11 that are normally located in the mid region of the embryo were placed in positions near the anterior end of the host embryo, these cells formed two consecutive segments, which exhibited Vasa-positive PGC-like cells at early juvenile stage. This suggests that in terms of PGC generation, the fates of m10 and m11 remain unchanged even if they are placed in ectopic positions along the anteroposterior axis. Nor was the fate of m10 and m11 changed even if mesodermal blast cell chains preceding or succeeding m10 and m11 were absent. In a previous study, it was shown that PGC development in segments X and XI occurs normally in the absence of the overlying ectoderm. All this strongly suggests that irrespective of their surrounding cellular environments, m10 and m11 autonomously generate PGCs. We propose that m10 and m11 are exclusively specified as precursors of PGCs at the time of their birth from the M teloblast and that the M teloblast possesses a developmental program through which the sequence of mesodermal blast cell identities is determined.


Hydrobiologia | 2001

Pattern formation in embryos of the oligochaete annelid Tubifex: cellular basis for segmentation and specification of segmental identity

Takashi Shimizu; Kaoru Kitamura; Asuna Arai; Ayaki Nakamoto

The embryonic origin of metameric segmentation was examined in the oligochaete Tubifex using lineage tracers. Segments in Tubifex embryos arise from five bilateral pairs of longitudinal coherent columns (bandlets) of primary blast cells which are generated by five bilateral pairs of embryonic stem cells called teloblasts (M, N, O, P and Q). As development proceeds, an initially linear array of blast cells in each ectodermal bandlet gradually changes its shape in a lineage-specific manner. These morphogenetic changes result in the formation of distinct cell clumps, which are separated from the bandlet to serve as segmental elements (SEs). SEs in the N and Q lineages are each comprised of clones of two consecutive primary blast cells. In contrast, in the O and P lineages, individual blast cell clones are distributed across SE boundaries; each SE is a mixture of a part of the preceding anterior clone and a part of the next posterior clone. Morphogenetic events, including segmentation, in an ectodermal bandlet proceed normally in the absence of neighboring ectodermal bandlets. Without the underlying mesoderm, separated SEs fail to space themselves at regular intervals along the anteroposterior axis. It is suggested that ectodermal segmentation in Tubifex consists of two stages; autonomous morphogenesis of each bandlet leading to generation of SEs, and the ensuing mesoderm-dependent alignment of separated SEs. In contrast, metameric segmentation in the mesoderm (M lineage) is a one-step process in that it arises from an initially simple organization (i.e. a linear series) of primary m-blast cells, which individually serve as a founder cell of each segment. The boundary between mesodermal segments is determined autonomously. The results of a set of cell ablation and transplantation experiments, using alkaline phosphatase activity as a biochemical marker for segments VII and VIII suggest that segmental identities in primary m-blast cells are determined according to the genealogical position in the M lineage and that the M teloblast possesses a developmental program through which the sequence of blast cell identities is determined.


The International Journal of Developmental Biology | 2014

Ilyanassa Notch signaling implicated in dynamic signaling between all three germ layers

Maey Gharbiah; Ayaki Nakamoto; Adam B. Johnson; J. David Lambert; Lisa M. Nagy

Two cells (3D and 4d) in the mud snail Ilyanassa obsoleta function to induce proper cell fate. In this study, we provide support for the hypothesis that Notch signaling in Ilyanassa obsoleta functions in inductive signaling at multiple developmental stages. The expression patterns of Notch, Delta and Suppressor of Hairless (SuH) are consistent with a function for Notch signaling in endoderm formation, the function of 3D/4d and the sublineages of 4d. Veligers treated with DAPT show a range of defects that include a loss of endodermal structures, and varying degrees of loss of targets of 4d inductive signaling. Veligers that result from injection of Ilyanassa Delta siRNAi in general mimic the defects observed in the DAPT treated larvae. The most severe DAPT phenotypes mimic early ablations of 4d. However, the early specification of 4d itself appears normal and MAPK activation in both 3D/4d and the micromeres, which are known to activate MAPK as a result of 3D/4d induction, are normal in DAPT treated larvae. Treating larvae at successively later timepoints with DAPT suggests that Notch/Delta signaling is not only required during early 4d inductive signaling, but during subsequent stages of cell fate determination as well. Based on our results, combined with previous reports implicating the endoderm in maintaining induced fate specification in Ilyanassa, we propose a speculative model that Notch signaling is required to specify endoderm fates and 4d sublineages, as well as to maintain cell fates induced by 4d.


CSH Protocols | 2009

Induction of larval metamorphosis in the snail Ilyanassa.

Maey Gharbiah; James Cooley; Esther M. Leise; Ayaki Nakamoto; Jeremy S. Rabinowitz; J. David Lambert; Lisa M. Nagy

The marine gastropod Ilyanassa obsoleta is a long-standing and very useful model for studies of embryonic development. It is an especially important model for spiralian development, and for studies of asymmetric cell division. The embryos are amenable to classic embryological manipulation techniques as well as a growing number of molecular approaches. Ilyanassa is also an important model for studies of metamorphosis, the ecology of parasitism, the effects of environmental contaminants on morphology and sexual function, and comparative neurobiology. Ilyanassa adults are readily obtainable and easy to keep in the laboratory, and they can produce high-quality embryos nearly year-round in the laboratory. After hatching from capsules, larval Ilyanassa can be maintained in culture, feeding on single-celled algae. The larvae will become competent to undergo metamorphosis after approximately 3 wk in culture. Metamorphosis can be induced artificially by treating with either the neurotransmitter serotonin or the nitric oxide synthase inhibitor 7-nitroindazole. Both of these reagents have been shown to induce metamorphosis in >75% of larvae within 48 h. This protocol describes the induction of metamorphosis in snail larvae.

Collaboration


Dive into the Ayaki Nakamoto's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Esther M. Leise

University of North Carolina at Greensboro

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge