Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Aydin Berenjian is active.

Publication


Featured researches published by Aydin Berenjian.


Biotechnology Letters | 2016

Application of magnetic nanoparticles in smart enzyme immobilization

Hamideh Vaghari; Hoda Jafarizadeh-Malmiri; Mojgan Mohammadlou; Aydin Berenjian; Navideh Anarjan; Nahideh Jafari; Shahin Nasiri

Abstract Immobilization of enzymes enhances their properties for efficient utilization in industrial processes. Magnetic nanoparticles, due to their high surface area, large surface-to-volume ratio and easy separation under external magnetic fields, are highly valued. Significant progress has been made to develop new catalytic systems that are immobilized onto magnetic nanocarriers. This review provides an overview of recent developments in enzyme immobilization and stabilization protocols using this technology. The current applications of immobilized enzymes based on magnetic nanoparticles are summarized and future growth prospects are discussed. Recommendations are also given for areas of future research.


Nanomaterials | 2015

Synthesis and Application of Amine Functionalized Iron Oxide Nanoparticles on Menaquinone-7 Fermentation: A Step towards Process Intensification

Alireza Ebrahiminezhad; Vikas Varma; Shuyi Yang; Younes Ghasemi; Aydin Berenjian

Industrial production of menaquione-7 by Bacillus subtilis natto is associated with major drawbacks. To address the current challenges in menaquione-7 fermentation, studying the effect of magnetic nanoparticles on the bacterial cells can open up a new domain for intensified menqainone-7 process. This article introduces the new concept of production and application of l-lysine coated iron oxide nanoparticles (l-Lys@IONs) as a novel tool for menaquinone-7 biosynthesis. l-Lys@IONs with the average size of 7 nm were successfully fabricated and were examined in a fermentation process of l-Lys@IONs decorated Bacillus subtilis natto. Based on the results, higher menaquinone-7 specific yield was observed for l-Lys@IONs decorated bacterial cells as compared to untreated bacteria. In addition, more than 92% removal efficacy was achieved by using integrated magnetic separation process. The present study demonstrates that l-Lys@IONs can be successfully applied during a fermentation of menaquinone-7 without any negative consequences on the culture conditions. This study provides a novel biotechnological application for IONs and their future role in bioprocess intensification.


Molecular Biotechnology | 2015

Application of Chitosan-Based Nanocarriers in Tumor-Targeted Drug Delivery

Mohammad Ali Ghaz-Jahanian; Farzin Abbaspour-Aghdam; Navideh Anarjan; Aydin Berenjian; Hoda Jafarizadeh-Malmiri

Cancer is one of the major malignant diseases in the world. Current anti tumor agents are restricted during the chemotherapy due to their poor solubility in aqueous media, multidrug resistance problems, cytotoxicity, and serious side effects to healthy tissues. Development of targeted drug nanocarriers would enhance the undesirable effects of anticancer drugs and also selectively deliver them to cancerous tissues. Variety of nanocarriers such as micelles, polymeric nanoparticles, liposomes nanogels, dendrimers, and carbon nanotubes have been used for targeted delivery of anticancer agents. These nanocarriers transfer loaded drugs to desired sites through passive or active efficacy mechanisms. Chitosan and its derivatives, due to their unique properties such as hydrophilicity, biocompatibility, and biodegradability, have attracted attention to be used in nanocarriers. Grafting cancer-specific ligands onto the Chitosan nanoparticles, which leads to ligand–receptor interactions, has been successfully developed as active targeting. Chitosan-conjugated components also respond to external or internal physical and chemical stimulus in targeted tumors that is called environment triggers. In this study, mechanisms of targeted tumor deliveries via nanocarriers were explained; specifically, chitosan-based nanocarriers in tumor-targeting drug delivery were also discussed.


Applied Microbiology and Biotechnology | 2014

Nattokinase: production and application

Fatemeh Dabbagh; Aydin Berenjian; Abdolazim Behfar; Fatemeh Mohammadi; Mozhdeh Zamani; Cambyz Irajie; Younes Ghasemi

Nattokinase (NK, also known as subtilisin NAT) (EC 3.4.21.62) is one of the most considerable extracellular enzymes produced by Bacillus subtilis natto. The main interest about this enzyme is due to its direct fibrinolytic activity. Being stable enough in the gastrointestinal tract makes this enzyme a useful agent for the oral thrombolytic therapy. Thus, NK is regarded as a valuable dietary supplement or nutraceutical. Proven safety and ease of mass production are other advantages of this enzyme. In addition to these valuable advantages, there are other applications attributed to NK including treatment of hypertension, Alzheimer’s disease, and vitreoretinal disorders. This review tends to bring a brief description about this valuable enzyme and summarizes the various biotechnological approaches used in its production, recovery, and purification. Some of the most important applications of NK, as well as its future prospects, are also discussed.


Applied Microbiology and Biotechnology | 2016

Bioconcrete: next generation of self-healing concrete

Mostafa Seifan; Ali Khajeh Samani; Aydin Berenjian

Concrete is one of the most widely used construction materials and has a high tendency to form cracks. These cracks lead to significant reduction in concrete service life and high replacement costs. Although it is not possible to prevent crack formation, various types of techniques are in place to heal the cracks. It has been shown that some of the current concrete treatment methods such as the application of chemicals and polymers are a source of health and environmental risks, and more importantly, they are effective only in the short term. Thus, treatment methods that are environmentally friendly and long-lasting are in high demand. A microbial self-healing approach is distinguished by its potential for long-lasting, rapid and active crack repair, while also being environmentally friendly. Furthermore, the microbial self-healing approach prevails the other treatment techniques due to the efficient bonding capacity and compatibility with concrete compositions. This study provides an overview of the microbial approaches to produce calcium carbonate (CaCO3). Prospective challenges in microbial crack treatment are discussed, and recommendations are also given for areas of future research.


Critical Reviews in Microbiology | 2017

Iron oxide nanoparticles in modern microbiology and biotechnology

Ranmadugala Dinali; Alireza Ebrahiminezhad; Merilyn Manley-Harris; Younes Ghasemi; Aydin Berenjian

Abstract Iron oxide nanoparticles (IONs) are one of the most developed and used nanomaterials in biotechnology and microbiology. These particles have unique physicochemical properties, which make them unique among nanomaterials. Therefore, many experiments have been conducted to develop facile synthesis methods for these particles and to make them biocompatible. Various effects of IONs on microorganisms have been reported. Depending on the microbial strain and nanoparticle (NP) concentration, IONs can stimulate or inhibit microbial growth. Due to the superparamagnetic properties of IONs, these NPs have used as nano sources of heat for hyperthermia in infected tissues. Antibiotic-loaded IONs are used for targeted delivery of chemical therapy direct to the infected organ and IONs have been used as a dirigible carrier for more potent antimicrobial nanomaterials such as silver nanoparticles. Magnetic NPs have been used for specific separation of pathogen and non-pathogen bacterial strains. Very recently, IONs were used as a novel tool for magnetic immobilization of microbial cells and process intensification in a biotechnological process. This review provides an overview of application of IONs in different microbial processes. Recommendations are also given for areas of future research.


Nano Research | 2016

A biotechnological perspective on the application of iron oxide nanoparticles

Farnaz Assa; Hoda Jafarizadeh-Malmiri; Hossein Ajamein; Navideh Anarjan; Hamideh Vaghari; Zahra Sayyar; Aydin Berenjian

In recent decades, magnetic iron nanoparticles (NPs) have attracted much attention due to properties such as superparamagnetism, high surface area, large surface-to-volume ratio, and easy separation under external magnetic fields. Therefore, magnetic iron oxides have potential for use in numerous applications, including magnetic resonance imaging contrast enhancement, tissue repair, immunoassay, detoxification of biological fluids, drug delivery, hyperthermia, and cell separation. This review provides an updated and integrated focus on the fabrication and characterization of suitable magnetic iron NPs for biotechnological applications. The possible perspective and some challenges in the further development of these NPs are also discussed.


Critical Reviews in Biotechnology | 2017

Chitosan magnetic nanoparticles for drug delivery systems

Farnaz Assa; Hoda Jafarizadeh-Malmiri; Hossein Ajamein; Hamideh Vaghari; Navideh Anarjan; Omid Ahmadi; Aydin Berenjian

Abstract The potential of magnetic nanoparticles (MNPs) in drug delivery systems (DDSs) is mainly related to its magnetic core and surface coating. These coatings can eliminate or minimize their aggregation under physiological conditions. Also, they can provide functional groups for bioconjugation to anticancer drugs and/or targeted ligands. Chitosan, as a derivative of chitin, is an attractive natural biopolymer from renewable resources with the presence of reactive amino and hydroxyl functional groups in its structure. Chitosan nanoparticles (NPs), due to their huge surface to volume ratio as compared to the chitosan in its bulk form, have outstanding physico-chemical, antimicrobial and biological properties. These unique properties make chitosan NPs a promising biopolymer for the application of DDSs. In this review, the current state and challenges for the application magnetic chitosan NPs in drug delivery systems were investigated. The present review also revisits the limitations and commercial impediments to provide insight for future works.


Advances in Natural Sciences: Nanoscience and Nanotechnology | 2016

Biomimetic synthesis of silver nanoparticles using microalgal secretory carbohydrates as a novel anticancer and antimicrobial

Alireza Ebrahiminezhad; Mahboobeh Bagheri; Seyedeh-Masoumeh Taghizadeh; Aydin Berenjian; Younes Ghasemi

Secreted carbohydrates by Chlorella vulgaris cells were used for reducing and capping Silver nanoparticles (AgNPs). Oxygen-bearing functional groups on the carbohydrates found to be the main biochemical groups responsible for anchoring the metal nanoparticles. Transmission electron microscopy (TEM) micrographs showed that isotropic small particles with mean particles size of 7 nm were synthesized. Comparing the TEM results with DLS analysis revealed that the thickness of carbohydrate capping was about 2 nm. A zeta potential of +26 mV made the particles colloidally stable and desirable for anticancer and antimicrobial applications. The MIC against gram positive (Staphylococcus aureus) and gram negative bacteria (Escherichia coli) were determined to be 37.5 μg ml−1 and 9.4 μg ml−1, respectively. Treatment of Hep-G2 cells with 4.7 μg ml−1 AgNPs for 24 h reduced the cell viability to 61%. This concentration was also reduced the cell viability to 37% after 48 h of exposure.


Iet Nanobiotechnology | 2016

Template free synthesis of natural carbohydrates functionalised fluorescent silver nanoclusters.

Alireza Ebrahiminezhad; Aydin Berenjian; Younes Ghasemi

Template-assisted synthesis is one of the most recognised techniques for fabrication of silver nanoclusters (AgNCs). However, this process is time consuming, toxic and expensive. In this study, the authors report a completely novel approach for the green and facile synthesis of AgNCs using Matricaria chamomilla, without any additional template. Fluorescent and colloidally stable AgNCs with average particle size of 2.4 nm were successfully produced. They found that carbohydrates from Matricaria chamomilla act as an ideal template to generate fluorescent AgNCs. Moreover, oxygen-bearing functional groups were validated to be the active groups for anchoring and reducing of Ag(+) ions. The novel carbohydrate coating method makes the prepared nanoclusters completely hydrophilic and stable in aqueous matrices.

Collaboration


Dive into the Aydin Berenjian's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ali Demirci

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Ehsan Mahdinia

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge