Aydın Çakir
Istanbul University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Aydın Çakir.
Physica Medica | 2009
Hatice Bilge; Aydın Çakir; Murat Okutan; Hilal Acar
The aim of this study was to determine the surface doses using GafChromic EBT films and compare them with plane-parallel ionization chamber measurements for 6 and 18 MV high energy photon beams. The measurements were made in a water equivalent solid phantom in the build-up region of the 6 and 18MV photon beams at 100 cm SSD for various field sizes. Markus type plane-parallel ion chamber with fixed-separation between collecting electrodes was used to measure the percent depth doses. GafChromic EBT film measurements were performed both on the phantom surface and maximum dose depth at the same geometry with ion chamber measurements. The surface doses found using GafChromic EBT film were 15%, 20%, 29%and 39%+/-2% (1SD) for 6 MV photons, 6%, 11%, 23% and 32%+/-2% (1SD) for 18 MV photons at 5, 10, 20 and 30 cm(2) field sizes, respectively. GafChromic EBT film provides precise measurements for surface dose in the high energy photons. Agreement between film and plane-parallel chamber measurements was found to be within +/-3% for 18 MV photon beams. There was 5% overestimate on the surface doses when compared with the plane-parallel chamber measurements for all field sizes in the 6 MV photon beams.
Japanese Journal of Radiology | 2010
Hatice Bilge; Nurdan Ozbek; Murat Okutan; Aydın Çakir; Hilal Acar
PurposeHigh-energy photons are most commonly used in radiotherapy to treat cancer. Wedge filters are required to obtain homogeneous dose distribution in the patient. Different wedge filter types create different surface doses. In this study, the effect of the virtual and physical wedge filters on the surface and build-up region doses was examined for 6- and 18-MV high-energy photon beams.Materials and methodsThe measurements were made in a water equivalent phantom in the build-up region at a 100-cm source-to-surface distance for various field sizes using virtual and physical wedge filters having different angles. A parallel-plate ion chamber was used to measure the percent depth doses.ResultsThe percentage dose at the surface increased as the field size increased for open, virtual, and physical wedged beams. For open, physical, and virtual wedged beams, the surface doses were found to be 15.4%, 9.9%, and 15.9% with 6-MV photons and 10.6%, 8.8%, 11.9% with 18-MV photons, respectively, at 10 × 10 cm2 field size.ConclusionBuild-up doses of virtual wedged beams were similar to those of open beams. Surface and buildup doses of physical wedged beams were lower than those of open and virtual wedged beams.
Medical Dosimetry | 2009
Bayram Demir; Murat Okutan; Aydın Çakir; Evren Ozan Göksel; Hatice Bilge
The aim of this study is to determine the effect of bolus to the surface dose in oblique electron incidences. Irradiations with 4.5, 6, 7.5, 9, and 12-MeV electron beams were made for the incidence angles of 0 degrees, 15 degrees, 30 degrees, 45 degrees, 60 degrees, 75 degrees and using 3 different bolus setups: (1) unbolused (no bolus), (2) 5-mm bolus, and (3) 10-mm bolus. A set of EBT gafchromic film pieces placed on the phantom surface was irradiated with a 400-cGy dose at D(max) for each setup. Whereas surface dose increased with increasing incidence degrees in the absence of a bolus, it was seen that there was a large surface dose decreasing in the presence of a bolus with increasing incidence angles. For 60 degrees incidence angle, the relative surface doses with unbolused setup were: 88.10%, 90.06%, 89.35%, 90.25%, and 97.10%; with 5-mm bolus: 66.45%, 81.20%, 99.78%, 124.43%, and 116.07%; and with 10-mm bolus: 22.65%, 45.20%, 55.20%, 65.82%, and 90.27% for 4.5, 6, 7.5, 9, and 12 MeV, respectively. The use of bolus in the treatment of highly oblique surfaces with low-energy electron beams significantly decreases the surface dose.
Asian Pacific Journal of Cancer Prevention | 2015
Aydın Çakir; Zuleyha Akgun; Merdan Fayda; Fulya Yaman Agaoglu
Radiotherapy has an important role in the treatment of prostate cancer. Three-dimensional conformal radiation therapy (3D-CRT), intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) techniques are all applied for this purpose. However, the risk of secondary radiation-induced bladder cancer is significantly elevated in irradiated patients compared surgery-only or watchful waiting groups. There are also reports of risk of secondary cancer with low doses to normal tissues. This study was designed to compare received volumes of low doses among 3D-CRT, IMRT and VMAT techniques for prostate patients. Ten prostate cancer patients were selected retrospectively for this planning study. Treatment plans were generated using 3D-CRT, IMRT and VMAT techniques. Conformity index (CI), homogenity index (HI), receiving 5 Gy of the volume (V5%), receiving 2 Gy of the volume (V2%), receiving 1 Gy of the volume (V1%) and monitor units (MUs) were compared. This study confirms that VMAT has slightly better CI while thev olume of low doses was higher. VMAT had lower MUs than IMRT. 3D-CRT had the lowest MU, CI and HI. If target coverage and normal tissue sparing are comparable between different treatment techniques, the risk of second malignancy should be a important factor in the selection of treatment.
Medical Dosimetry | 2015
Nazmiye Donmez Kesen; Aydın Çakir; Murat Okutan; Hatice Bilge
In recent years, small-field electron beams have been used for the treatment of superficial lesions, which requires small circular fields. However, when using very small electron fields, some significant dosimetric problems may occur. In this study, dose distributions and outputs of circular fields with dimensions of 5cm and smaller, for nominal energies of 6, 9, and 15MeV from the Siemens ONCOR Linac, were measured and compared with data from a treatment planning system using the pencil-beam algorithm in electron beam calculations. All dose distribution measurements were performed using the Gafchromic EBT film; these measurements were compared with data that were obtained from the Computerized Medical Systems (CMS) XiO treatment planning system (TPS), using the gamma-index method in the PTW VeriSoft software program. Output measurements were performed using the Gafchromic EBT film, an Advanced Markus ion chamber, and thermoluminescent dosimetry (TLD). Although the pencil-beam algorithm is used to model electron beams in many clinics, there is no substantial amount of detailed information in the literature about its use. As the field size decreased, the point of maximum dose moved closer to the surface. Output factors were consistent; differences from the values obtained from the TPS were, at maximum, 42% for 6 and 15MeV and 32% for 9MeV. When the dose distributions from the TPS were compared with the measurements from the Gafchromic EBT films, it was observed that the results were consistent for 2-cm diameter and larger fields, but the outputs for fields of 1-cm diameter and smaller were not consistent. In CMS XiO TPS, calculated using the pencil-beam algorithm, the dose distributions of electron treatment fields that were created with circular cutout of a 1-cm diameter were not appropriate for patient treatment and the pencil-beam algorithm is not convenient for monitor unit (MU) calculations in electron dosimetry.
Science and Technology of Nuclear Installations | 2014
Nazmiye Donmez Kesen; Aydın Çakir; Murat Okutan; Hatice Bilge
In this study, dose distributions and outputs of circular fields with dimensions of 5 cm and smaller, for 6 and 9 MeV nominal energies from the Siemens ONCOR Linac, were measured and compared with data from a treatment planning system using the pencil beam algorithm in electron beam calculations. All dose distribution measurements were performed using the GafChromic EBT film; these measurements were compared with data that were obtained from the Computerized Medical Systems (CMS) XiO treatment planning system (TPS). Output measurements were performed using GafChromic EBT film, an Advanced Markus ion chamber, and thermoluminescent dosimetry (TLD). Although it is used in many clinics, there is not a substantial amount of detailed information in the literature about use of the pencil beam algorithm to model electron beams. Output factors were consistent; differences from the values obtained from the TPS were at maximum. When the dose distributions from the TPS were compared with the measurements from the ion chamber and GafChromic EBT films, it was observed that the results were consistent with 2 cm diameter fields and larger, but the outputs for 1 cm diameter fields and smaller were not consistent.
Journal of Radiotherapy in Practice | 2010
Didem Karaçetin; Aydın Çakir; Fulya Yaman Agaoglu; Hakan Camlica; Arzu Ergen; Yavuz Dizdar; Emin Darendeliler
Türk Onkoloji Dergisi | 2009
Aydın Çakir; Fulya Ağaoğlu; Bilgehan Şahin; Murat Okutan; Yavuz Dizdar; Emin Darendelioğlu
Turkiye Klinikleri Journal of Radiation Oncology-Special Topics | 2016
Fadime Alkaya; Aydın Çakir; Murat Okutan
Archive | 2009
Aydın Çakir; Murat Okutan