Ayelet M. Samuni
Hebrew University of Jerusalem
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ayelet M. Samuni.
Proceedings of the National Academy of Sciences of the United States of America | 2003
Ayelet M. Samuni; Eric Y. Chuang; Murali C. Krishna; William E. Stein; William DeGraff; Angelo Russo; James B. Mitchell
Modulation of the cytotoxicity and mutagenicity of 4-hydroxyestradiol (4-OHE2), an oxidative metabolite of estrogen, by antioxidants was assessed in human MCF7 cells and TK-6 lymphoblast cells. The cytotoxicity of the catecholic estrogens was potentiated by depletion of intracellular glutathione and was independent of oxygen concentration. Agents such as the nitroxide Tempol can facilitate the oxidation of the semiquinone to the Q and enhanced 4-OHE2 cytotoxicity. Conversely, reducing agents such as ascorbate, cysteine, and 1,4-dihydroxytetramethylpiperidine (THP) protected against cytotoxicity and decreased mutation induction, presumably by reducing the semiquinone to the hydroquinone. Our results support the proposition that oxidation of the semiquinone to the corresponding Q is crucial in eliciting the deleterious effects of catecholic estrogens. Furthermore, because the deleterious effects of 4-OHE2 were abrogated by dietary and synthetic antioxidants, our results would support the chemopreventive use of diets rich in reducing substances (vitamins and added synthetic antioxidants) as a means of decreasing the risks associated with estrogen exposure and developing of breast cancer.
Free Radical Biology and Medicine | 1989
Ayelet M. Samuni; Amram Samuni; Harold M. Swartz
In a recent report, it was concluded that DMPO, often considered the spin trap of choice for detection of superoxide and hydroxyl radical adducts in biological systems, may be unsuitable for many biological uses because of its instability in cellular systems. It was demonstrated in red blood cells and in hamster V79 cells that the DMPO spin adducts of .O2- and .OH are metabolized very rapidly so that even if formed, they may not be detected in many experiments with cells. Because of the potential importance of these findings to experiments already reported on the occurrence of oxygen radicals in cellular systems, and the implications of these findings for future experiments, we have extended the studies on DMPO to other cellular, systems. We have also investigated the role of oxygen in this system because it has been shown recently that very hypoxic cells reduce some nitroxides much more rapidly than oxic cells and therefore it seemed possible that the rapid loss of radical adducts of DMPO was due to the hypoxic conditions under which the previous experiments were carried out. The results of the present experiments indicate that the loss of the DMPO spin adducts occurs in other cell systems as well, that the decomposition rate is independent of the concentration of oxygen, and that the final products of cellular metabolism of DMPO adducts are different from those of most nitroxides. There is no evidence that intracellular DMPO-spin adducts of oxygen radicals can be observed under conditions similar to those used in this study. We conclude that DMPO is not likely to be a suitable agent for studying intracellular oxygen radicals.
Biochimica et Biophysica Acta | 2002
Sandhya Xavier; Ken-ichi Yamada; Ayelet M. Samuni; Amram Samuni; William DeGraff; Murali C. Krishna; James B. Mitchell
Modulation of radiation- and metal ion-catalyzed oxidative-induced damage using plasmid DNA, genomic DNA, and cell survival, by three nitroxides and their corresponding hydroxylamines, were examined. The antioxidant property of each compound was independently determined by reacting supercoiled DNA with copper II/1,10-phenanthroline complex fueled by the products of hypoxanthine/xanthine oxidase (HX/XO) and noting the protective effect as assessed by agarose gel electrophoresis. The nitroxides and their corresponding hydroxylamines protected approximately to the same degree (33-47% relaxed form) when compared to 76.7% relaxed form in the absence of protectors. Likewise, protection by both the nitroxide and corresponding hydroxylamine were observed for Chinese hamster V79 cells exposed to hydrogen peroxide. In contrast, when plasmid DNA damage was induced by ionizing radiation (100 Gy), only nitroxides (10 mM) provide protection (32.4-38.5% relaxed form) when compared to radiation alone or in the presence of hydroxylamines (10 mM) (79.8% relaxed form). Nitroxide protection was concentration dependent. Radiation cell survival studies and DNA double-strand break (DBS) assessment (pulse field electrophoresis) showed that only the nitroxide protected or prevented damage, respectively. Collectively, the results show that nitroxides and hydroxylamines protect equally against the damage mediated by oxidants generated by the metal ion-catalyzed Haber-Weiss reaction, but only nitroxides protect against radiation damage, suggesting that nitroxides may more readily react with intermediate radical species produced by radiation than hydroxylamines.
Antioxidants & Redox Signaling | 2004
Yuval Samuni; Janet Gamson; Ayelet M. Samuni; Ken-ichi Yamada; Angelo Russo; Murali C. Krishna; James B. Mitchell
Nitroxides have been shown to be effective antioxidants, radiation protectors, and redox-active probes for functional electron paramagnetic resonance (EPR) imaging. More recently, the nitroxide 4-hydroxy-2,2,6,6-tetramethylpiperidinyl-N-oxyl (Tempol) has been shown to exert differential cytotoxicity to tumor compared with normal cell counterparts. Nitroxides are readily reduced in tissues to their respective hydroxylamines, which exhibit less cytotoxicity in vitro and do not provide radiation protection or an EPR-detectable signal for imaging. In order to better understand factors that influence nitroxide reduction, the rate of reduction of Tempol in mouse and human cell lines and in primary cultures of tumor cells was measured using EPR spectroscopy. Additionally, the cytotoxicity of high concentrations of Tempol and the hydroxylamine of Tempol (Tempol-H) was evaluated in wild-type and glucose-6-phosphate dehydrogenase (G6PD)-deficient Chinese hamster ovary cells. The results show that in general Tempol was reduced at a faster rate when cells were under hypoxic compared with aerobic conditions. Neither depletion of intracellular glutathione nor treatment of cells with sodium cyanide influenced Tempol reduction rates. G6PD-deficient cells were found to reduce Tempol at a significantly slower rate than wild-type cells. Likewise, Tempol-induced cytotoxicity was markedly less for G6PD-deficient cells compared with wild-type cells. Tempol-H exhibited no cytotoxicity to either cell type. Tempol-mediated cytotoxicity was enhanced by glutathione depletion and inhibition of 6-phosphogluconate dehydrogenase in wild-type cells, but was unaltered in G6PD-deficient cells. Collectively, the results indicate that while the bioreduction of Tempol can be influenced by a number of factors, the hexose monophosphate shunt appears to be involved in both nitroxide reduction as well as cytotoxicity induced by high levels of exposure to Tempol.
Free Radical Biology and Medicine | 1997
Ayelet M. Samuni; Yechezkel Barenholz; Daan J.A. Crommelin; Nicolaas J. Zuidam
The present study aims to determine the effect of bilayer composition on oxidative damage and the protection against it in lipid multicomponent membranes. Irradiation damage in 200-nm liposomes and the protection provided by the nitroxide radicals, 2,2,6,6-tetramethylpiperidine-1-oxyl (Tempo) and 4-hydroxy-2,2,6,6-tetramethylpiperidine--1-oxyl (Tempol) were assessed by monitoring several chemical and physical parameters. Liposomes were prepared in four different lipid compositions (mole ratios), DPPC:DPPG 10:1; DPPC:DPPG:cholesterol 10:1:4; EPC:EPG 10:1; and EPC:EPG:cholesterol 10:1:4, and gamma-irradiated with a dose of 32 kGy. Lipid degradation was determined by HPLC and GC analyses, whereas size and differential scanning calorimetry measurements were used to monitor physical changes in the liposomal dispersions. The results indicate that: (1) addition of 5 mM Tempo or Tempol, or freezing of the sample inhibited radiation-induced lipid degradation; (2) Tempo and Tempol caused neither physical nor chemical changes in the liposomal dispersions; and (3) both nitroxides prevented or reduced some of the radiation-induced changes in thermotropic characteristics of the liposomes, preventing a shift in the temperature of the maximum of the main phase transition.
Biochimica et Biophysica Acta | 2001
Ayelet M. Samuni; William DeGraff; Murali C. Krishna; James B. Mitchell
While the exact mechanism of H2O2-induced cytotoxicity is unknown, there is considerable evidence implicating DNA as a primary target. A recent study showed that a cell-impermeable nitroxide protected mammalian cells from H2O2-induced cell killing and suggested that the protection was mediated through cell membrane-bound or extracellular factors. To further define the protective properties of nitroxides, Chinese hamster V79 cells were exposed to H2O2 with or without cell-permeable and impermeable nitroxides and selected metal chelators. EPR spectroscopy and paramagnetic line broadening agents were used to distinguish between intra- and extracellular nitroxide distribution. To study the effectiveness of nitroxide protection, in the absence of a cell membrane, H2O2-mediated damage to supercoiled plasmid DNA was evaluated. Both deferrioxamine and Tempol cross the cell membrane, and inhibited H2O2-mediated cell killing, whereas the cell-impermeable DTPA and nitroxide, CAT-1, failed to protect. Similar protective effects of the chelators and nitroxides were observed when L-histidine, which enhances intracellular injury, was added to H2O2. In contrast, when damage to plasmid DNA was induced (in the absence of a cell membrane), both nitroxides were protective. Collectively, these results do not support a role for membrane-bound or extracellular factors in mediating H2O2 cytotoxicity in mammalian cells.
Molecular and Cellular Biochemistry | 2002
Ayelet M. Samuni; William DeGraff; Murali C. Krishna; James B. Mitchell
Nitroxide free radicals have been shown to be potent antioxidants in a variety of experimental models using diverse means of insults. Among other insults, nitroxides have been shown effective in inhibiting cytotoxicity of quinone-based drugs such as streptonigrin and mitomycin C. These drugs and other chemotherapeutic agents have the potential to undergo bioreductive activation by the normal reducing enzymes within a cell. In the present work we studied the effect of the nitroxide Tempol on the cytotoxicity induced by EO9, a mitomycin C analogue, in HT29 cells under aerobic and hypoxic conditions. The study was aimed to better understand the mechanism of EO9 cytotoxicity and the molecular level of the nitroxides mode of protection. The reactions of Tempol with activated EO9, and the reactive species formed during EO9 activation were studied in a cell-free solution, using spin-trapping, and electron paramagnetic resonance (EPR) spectrometry. Our results indicate that EO9 induced similar cytotoxicity in HT29 cells under aerobic and hypoxic conditions while Tempol provided similar and almost complete protection to both aerobic and hypoxic cells. The results indicate that EO9 cytotoxicity is due to both 1- and 2-electron reductive activation processes, with aerobic toxicity caused by back-oxidation of the hydroquinone to the semiquinone, EO9•–. Tempol serves both as a useful tool in the study of the mechanisms of quinone-mediated cytotoxicity and as a potent antioxidant against the damaging effects of redox cycling quinones and semiquinones by scavenging of EO9•– or detoxification of O2•– and H2O2.
Archive | 1998
Aba Priev; Ayelet M. Samuni; Oren Tirosh; Yechezkel Barenholz
Phospholipids are amphipathic compounds which form structures such as micelles and liposomes in aqueous media as a result of minimizing hydrophobic interaction. Thermodynamic stability of the lipid assemblies is due to a balance between the weak attractive van der Waals and hydrophobic forces, and repulsive electrostatic, steric, and hydration ones (Lasic and Martin, 1995). Lipid peroxidation (LPO) is a major damaging process in membranes and in liposomal dispersions. Oxidation processes in membranes are initiated by reactive oxygen species (ROS) formed in the aqueous phase and in the lipids, leading to chemical degradation, especially of polyunsaturated acyl chains of phospholipids.
Journal of Thermal Analysis and Calorimetry | 1998
Ayelet M. Samuni; Daan J.A. Crommelin; Nicolaas J. Zuidam; Yechezkel Barenholz
This study was aimed to investigate the physicochemical changes induced in 200 nm extruded oligolamellar DPPC:DPPG (10:1) liposomes by freezing, followed by γ-irradiation, in the absence and presence of 5 mM stable cyclic nitroxide radicals, 2,2,6,6-tetramethylpiperidine-1-oxyl (Tempo) and 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (Tempol). The characterization is based on the use of differential scanning calorimetry (DSC) and was aimed to differentiate the contribution of freezing and γ-irradiation in the presence and absence of nitroxides. Liposomal preparations of DPPC/DPPG which have sub-, pre- and main-phase transitions in the temperature range (0°C<Tm<50°C) were used.Our results show that: (1) freezing modified and induced fusion to MLV as well as fission to SUV, (2) freezing did not fully prevent the radiation-induced changes in the thermotropic characteristics of the liposomes, and (3) Tempo and Tempol did not prevent the changes in thermotropic behavior caused as a result of freezing of the liposomal dispersion. These results demonstrate that DSC is a powerful and sensitive tool in both physical and chemical studies of lipid assemblies.
Journal of Biological Chemistry | 1988
Ayelet M. Samuni; C M Krishna; P Riesz; E Finkelstein; Angelo Russo