Ayman W. El-Hattab
Baylor College of Medicine
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ayman W. El-Hattab.
Molecular Genetics and Metabolism | 2015
Ayman W. El-Hattab; Adekunle M. Adesina; Jeremy Y. Jones; Fernando Scaglia
Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome is one of the most frequent maternally inherited mitochondrial disorders. MELAS syndrome is a multi-organ disease with broad manifestations including stroke-like episodes, dementia, epilepsy, lactic acidemia, myopathy, recurrent headaches, hearing impairment, diabetes, and short stature. The most common mutation associated with MELAS syndrome is the m.3243A>G mutation in the MT-TL1 gene encoding the mitochondrial tRNA(Leu(UUR)). The m.3243A>G mutation results in impaired mitochondrial translation and protein synthesis including the mitochondrial electron transport chain complex subunits leading to impaired mitochondrial energy production. The inability of dysfunctional mitochondria to generate sufficient energy to meet the needs of various organs results in the multi-organ dysfunction observed in MELAS syndrome. Energy deficiency can also stimulate mitochondrial proliferation in the smooth muscle and endothelial cells of small blood vessels leading to angiopathy and impaired blood perfusion in the microvasculature of several organs. These events will contribute to the complications observed in MELAS syndrome particularly the stroke-like episodes. In addition, nitric oxide deficiency occurs in MELAS syndrome and can contribute to its complications. There is no specific consensus approach for treating MELAS syndrome. Management is largely symptomatic and should involve a multidisciplinary team. Unblinded studies showed that l-arginine therapy improves stroke-like episode symptoms and decreases the frequency and severity of these episodes. Additionally, carnitine and coenzyme Q10 are commonly used in MELAS syndrome without proven efficacy.
Orphanet Journal of Rare Diseases | 2012
Pilar L. Magoulas; Ayman W. El-Hattab
Systemic primary carnitine deficiency (CDSP) is an autosomal recessive disorder of carnitine transportation. The clinical manifestations of CDSP can vary widely with respect to age of onset, organ involvement, and severity of symptoms, but are typically characterized by episodes of hypoketotic hypoglycemia, hepatomegaly, elevated transaminases, and hyperammonemia in infants; skeletal myopathy, elevated creatine kinase (CK), and cardiomyopathy in childhood; or cardiomyopathy, arrhythmias, or fatigability in adulthood. The diagnosis can be suspected on newborn screening, but is established by demonstration of low plasma free carnitine concentration (<5 μM, normal 25-50 μM), reduced fibroblast carnitine transport (<10% of controls), and molecular testing of the SLC22A5 gene. The incidence of CDSP varies depending on ethnicity; however the frequency in the United States is estimated to be approximately 1 in 50,000 individuals based on newborn screening data. CDSP is caused by recessive mutations in the SLC22A5 gene. This gene encodes organic cation transporter type 2 (OCTN2) which transport carnitine across cell membranes. Over 100 mutations have been reported in this gene with the c.136C > T (p.P46S) mutation being the most frequent mutation identified. CDSP should be differentiated from secondary causes of carnitine deficiency such as various organic acidemias and fatty acid oxidation defects. CDSP is an autosomal recessive condition; therefore the recurrence risk in each pregnancy is 25%. Carrier screening for at-risk individuals and family members should be obtained by performing targeted mutation analysis of the SLC22A5 gene since plasma carnitine analysis is not a sufficient methodology for determining carrier status. Antenatal diagnosis for pregnancies at increased risk of CDSP is possible by molecular genetic testing of extracted DNA from chorionic villus sampling or amniocentesis if both mutations in SLC22A5 gene are known. Once the diagnosis of CDSP is established in an individual, an echocardiogram, electrocardiogram, CK concentration, liver transaminanses measurement, and pre-prandial blood sugar levels, should be performed for baseline assessment. Primary treatment involves supplementation of oral levocarnitine (L-carnitine) at a dose of 50–400 mg/kg/day divided into three doses. No formal surveillance guidelines for individuals with CDSP have been established to date, however the following screening recommendations are suggested: annual echocardiogram and electrocardiogram, frequent plasma carnitine levels, and CK and liver transaminases measurement can be considered during acute illness. Adult women with CDSP who are planning to or are pregnant should meet with a metabolic or genetic specialist ideally before conception to discuss management of carnitine levels during pregnancy since carnitine levels are typically lower during pregnancy. The prognosis for individuals with CDSP depends on the age, presentation, and severity of symptoms at the time of diagnosis; however the long-term prognosis is favorable as long as individuals remain on carnitine supplementation.
Molecular Genetics and Metabolism | 2012
Ayman W. El-Hattab; Jean W. Hsu; Lisa T. Emrick; Lee-Jun C. Wong; William J. Craigen; Farook Jahoor; Fernando Scaglia
Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome is one of the most common mitochondrial disorders. Although the pathogenesis of stroke-like episodes remains unclear, it has been suggested that mitochondrial proliferation may result in endothelial dysfunction and decreased nitric oxide (NO) availability leading to cerebral ischemic events. This study aimed to assess NO production in subjects with MELAS syndrome and the effect of the NO precursors arginine and citrulline. Using stable isotope infusion techniques, we assessed arginine, citrulline, and NO metabolism in control subjects and subjects with MELAS syndrome before and after arginine or citrulline supplementation. The results showed that subjects with MELAS had lower NO synthesis rate associated with reduced citrulline flux, de novo arginine synthesis rate, and plasma arginine and citrulline concentrations, and higher plasma asymmetric dimethylarginine (ADMA) concentration and arginine clearance. We conclude that the observed impaired NO production is due to multiple factors including elevated ADMA, higher arginine clearance, and, most importantly, decreased de novo arginine synthesis secondary to decreased citrulline availability. Arginine and, to a greater extent, citrulline supplementation increased the de novo arginine synthesis rate, the plasma concentrations and flux of arginine and citrulline, and NO production. De novo arginine synthesis increased markedly with citrulline supplementation, explaining the superior efficacy of citrulline in increasing NO production. The improvement in NO production with arginine or citrulline supplementation supports their use in MELAS and suggests that citrulline may have a better therapeutic effect than arginine. These findings can have a broader relevance for other disorders marked by perturbations in NO metabolism.
Molecular Genetics and Metabolism | 2012
Ayman W. El-Hattab; Lisa T. Emrick; William J. Craigen; Fernando Scaglia
Mitochondrial diseases arise as a result of dysfunction of the respiratory chain, leading to inadequate ATP production required to meet the energy needs of various organs. On the other hand, nitric oxide (NO) deficiency can occur in mitochondrial diseases and potentially play major roles in the pathogenesis of several complications including stroke-like episodes, myopathy, diabetes, and lactic acidosis. NO deficiency in mitochondrial disorders can result from multiple factors including decreased NO production due to endothelial dysfunction, NO sequestration by cytochrome c oxidase, NO shunting into reactive nitrogen species formation, and decreased availability of the NO precursors arginine and citrulline. Arginine and citrulline supplementation can result in increased NO production and hence potentially have therapeutic effects on NO deficiency-related manifestations of mitochondrial diseases. Citrulline is a more efficient NO donor than arginine as it results in a greater increase in de novo arginine synthesis, which plays a major role in driving NO production. This concept is supported by the observation that the three enzymes responsible for recycling citrulline to NO (argininosuccinate synthase and lyase, and nitric oxide synthase) function as a complex that can result in compartmentalizing NO synthesis and channeling citrulline efficiently to NO synthesis. Clinical research evaluating the effect of arginine and citrulline in mitochondrial diseases is limited to uncontrolled open label studies demonstrating that arginine administration to subjects with MELAS syndrome results in improvement in the clinical symptoms associated with stroke-like episodes and a decrease in the frequency and severity of these episodes. Therefore, controlled clinical studies of the effects of arginine or citrulline supplementation on different aspects of mitochondrial diseases are needed to explore the potential therapeutic effects of these NO donors.
Genetics in Medicine | 2010
Ayman W. El-Hattab; Feng Zhang; Rolanda Maxim; Katherine M Christensen; Jewell C. Ward; Stacy Hines-Dowell; Fernando Scaglia; James R. Lupski; Sau Wai Cheung
Purpose: To investigate the potential influence of additional copy number variants in patients with 15q24 rearrangements and the possible underlying mechanisms for these rearrangements.Methods: Oligonucleotide-based chromosomal microarray analyses were performed, and the results were subsequently confirmed by fluorescence in situ hybridization analyses. Long-range polymerase chain reaction amplification and DNA sequencing analysis were used for breakpoint junction sequencing.Results: We describe a 15-year-old boy with cognitive impairment and dysmorphic features with deletions in 15q24 and 3q21, a 2-month-old female infant with growth deficiency, heterotaxy, cardiovascular malformations, intestinal atresia, and duplications in 15q24 and 16q22, and a 3.5-year-old boy with developmental delay, microcephaly, and dysmorphic features, with duplications in 15q24 and 2q36.3q37.1. Breakpoint sequencing for the 15q24 deletion in the first patient revealed microhomology and suggested the underlying mechanism of either nonhomologous end joining or fork stalling and template switching/microhomology-mediated break-induced replication.Conclusions: The three described patients with 15q24 rearrangements have copy number variants at other loci and exhibit additional clinical features with a more severe phenotype than that observed in previously reported patients with isolated 15q24 rearrangements, suggesting that the genomic mutational load may contribute to the phenotypic severity and variability in patients with 15q24 rearrangements.
Human Mutation | 2010
Fangyuan Li; Ayman W. El-Hattab; Erawati V. Bawle; Richard G. Boles; Eric S. Schmitt; Fernando Scaglia; Lee-Jun C. Wong
Systemic primary carnitine deficiency (CDSP) is caused by recessive mutations in the SLC22A5 (OCTN2) gene encoding the plasmalemmal carnitine transporter and characterized by hypoketotic hypoglycemia, and skeletal and cardiac myopathy. The entire coding regions of the OCTN2 gene were sequenced in 143 unrelated subjects suspected of having CDSP. In 70 unrelated infants evaluated because of abnormal newborn screening (NBS) results, 48 were found to have at least 1 mutation/unclassified missense variant. Twenty‐eight of 33 mothers whose infants had abnormal NBS results were found to carry at least 1 mutation/unclassified missense variant, including 11 asymptomatic mothers who had 2 mutations. Therefore, sequencing of the OCTN2 gene is recommended for infants with abnormal NBS results and for their mothers. Conversely, 52 unrelated subjects were tested due to clinical indications other than abnormal NBS and only 14 of them were found to have at least one mutation/unclassified variant. Custom designed oligonucleotide array CGH analysis revealed a heterozygous ∼1.6 Mb deletion encompassing the entire OCTN2 gene in one subject who was apparently homozygous for the c.680G>A (p.R227H) mutation. Thus, copy number abnormalities at the OCTN2 locus should be considered if by sequencing, an apparently homozygous mutation or only one mutant allele is identified. ©2010 Wiley‐Liss, Inc.
Journal of Medical Genetics | 2011
Ayman W. El-Hattab; Ping Fang; Weihong Jin; Jeffrey R Hughes; James B. Gibson; Gayle Patel; Dorothy K. Grange; Linda Manwaring; Ankita Patel; Pawel Stankiewicz; Sau Wai Cheung
Background X linked intellectual disability (XLID) is common, with an estimated prevalence of 1/1000. The expanded use of array comparative genomic hybridisation (CGH) has led to the identification of several XLID-associated copy-number variants. Methods Array CGH analysis was performed using chromosomal microarray with ∼105 000 oligonucleotides covering the entire genome. Confirmatory fluorescence in situ hybridisation analyses were subsequently performed. Chromosome X-inactivation (XCI) was assessed using methylation-sensitive restriction enzyme digestion followed by PCR amplification. Results A novel ∼0.5 Mb duplication in Xq28 was identified in four cognitively impaired males who share behavioural abnormalities (hyperactivity and aggressiveness) and characteristic facial features (high forehead, upper eyelid fullness, broad nasal bridge and thick lower lip). These duplications were inherited from mothers with skewed XCI and are mediated by nonallelic homologous recombination between the low-copy repeat regions int22h-1 and int22h-2, which, in addition to int22h-3, are also responsible for inversions disrupting the factor VIII gene in haemophilia A. In addition, we have identified a reciprocal deletion in a girl and her mother, both of whom exhibit normal cognition and completely skewed XCI. The mother also had two spontaneous abortions. Conclusions The phenotypic similarities among subjects with int22h-1/int22h-2-mediated Xq28 duplications suggest that such duplications are responsible for a novel XLID syndrome. The reciprocal deletion may not be associated with a clinical phenotype in carrier females due to skewed XCI, but may be lethal for males in utero. Advancements in array CGH technology have enabled the identification of such small, clinically relevant copy-number variants.
Molecular Genetics and Metabolism | 2015
Ayman W. El-Hattab; Fernando Scaglia
Carnitine is a hydrophilic quaternary amine that plays a number of essential roles in metabolism with the main function being the transport of long-chain fatty acids from the cytosol to the mitochondrial matrix for β-oxidation. Carnitine can be endogenously synthesized. However, only a small fraction of carnitine is obtained endogenously while the majority is obtained from diet, mainly animal products. Carnitine is not metabolized and is excreted in urine. Carnitine homeostasis is regulated by efficient renal reabsorption that maintains carnitine levels within the normal range despite variabilities in dietary intake. Diseases occurring due to primary defects in carnitine metabolism and homeostasis are comprised in two groups: disorders of carnitine biosynthesis and carnitine transport defect. While the hallmark of carnitine transport defect is profound carnitine depletion, disorders of carnitine biosynthesis do not cause carnitine deficiency due to the fact that both carnitine obtained from diet and efficient renal carnitine reabsorption can maintain normal carnitine levels with the absence of endogenously synthesized carnitine. Carnitine transport defect phenotype encompasses a broad clinical spectrum including metabolic decompensation in infancy, cardiomyopathy in childhood, fatigability in adulthood, or absence of symptoms. The phenotypes associated with the carnitine transport defect result from the unavailability of enough carnitine to perform its functions particularly in fatty acid β-oxidation. Carnitine biosynthetic defects have been recently described and the phenotypic consequences of these defects are still emerging. Although these defects do not result in carnitine deficiency, they still could be associated with pathological phenotypes due to excess or deficiency of intermediate metabolites in the carnitine biosynthetic pathway and potential carnitine deficiency in early stages of life when brain and other organs develop. In addition to these two groups of primary carnitine defects, several metabolic diseases and medical conditions can result in excessive carnitine loss leading to a secondary carnitine deficiency.
Human Mutation | 2012
Inn-Chi Lee; Ayman W. El-Hattab; Jing Wang; Fangyuan Li; Shao-Wen Weng; William J. Craigen; Lee-Jun C. Wong
Leigh syndrome (LS) is a mitochondrial disease that typically presents in infancy with subacute neurodegenerative encephalopathy. It is genetically heterogeneous, but mutations in the complex IV assembly genes, particularly SURF1, are an important cause. In this study, SURF1 gene was sequenced in 590 patients with clinical suspicion of LS, complex IV deficiency, or clinical features of mitochondrial disorders. We identified 21 patients with clinical features of LS who are either homozygous or compound heterozygous for SURF1 mutations. Twenty‐two different mutations were identified, including 13 novel mutations. Of the 42 mutant alleles, 36 (86%) are null mutations (frameshift, splicing, or nonsense) and 6 (14%) are missense. We have also reviewed the previously reported SURF1 mutations and observed a clustering of mutation in exon 8 of SURF1, suggesting a vital function for this region. Although mutations in SURF1 have been mainly associated with typical LS, five of the patients in this report had an atypical course of LS. There is no definite genotype–phenotype correlation; however, frameshift mutations resulting in protein truncation closer to the C‐terminus may carry a better prognosis. Hum Mutat 33:1192–1200, 2012.
American Journal of Medical Genetics Part A | 2010
Ayman W. El-Hattab; Josh Skorupski; Michael H. Hsieh; Amy M. Breman; Ankita Patel; Sau Wai Cheung; William J. Craigen
OEIS complex (Omphalocele, Exstrophy of the cloaca, Imperforate anus, and Spine abnormalities) is a rare defect with estimated incidence of 1 in 200,000 live births. Most cases are sporadic, with no obvious cause. However, it has been rarely reported in patients with family members having similar malformations or with chromosomal anomalies. In addition, OEIS complex has been observed in association with environmental exposures, twinning, and in vitro fertilization. Monosomy 1p36 is the most common terminal deletion syndrome, with a prevalence of 1 in 5,000 newborns. It is characterized by specific facial features, developmental delay, and heart, skeletal, genitourinary, and neurological defects. We describe an infant with OEIS complex and 1p36 deletion who had features of both disorders, including omphalocele, cloacal exstrophy, imperforate anus, sacral multiple segmentation, renal malposition and malrotation, genital anomalies, diastasis of the symphysis pubis, microbrachycephaly, large anterior fontanel, cardiac septal defects, rib fusion, a limb deformity, developmental delay, and typical facial features. Chromosomal microarray analysis detected a 2.4 Mb terminal deletion of chromosome 1p. This is the first reported case with OEIS complex in association with a chromosome 1p36 deletion.