Ayonga Hereid
Georgia Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ayonga Hereid.
international conference on robotics and automation | 2016
Ayonga Hereid; Eric A. Cousineau; Christian M. Hubicki; Aaron D. Ames
Hybrid zero dynamics (HZD) has emerged as a popular framework for dynamic and underactuated bipedal walking, but has significant implementation difficulties when applied to the high degrees of freedom present in humanoid robots. The primary impediment is the process of gait design-it is difficult for optimizers to converge on a viable set of virtual constraints defining a gait. This paper presents a methodology that allows for the fast and reliable generation of efficient multi-contact robotic walking gaits through the framework of HZD, even in the presence of underactuation. To achieve this goal, we unify methods from trajectory optimization with the control framework of multi-domain hybrid zero dynamics. By formulating a novel optimization problem in the context of direct collocation and generating analytic Jacobians for the constraints, solving the resulting nonlinear program becomes tractable for large-scale nonlinear programming solvers, even for systems as high-dimensional as humanoid robots. We experimentally validated our methodology on the spring-legged prototype humanoid, DURUS, showing that the optimization approach yields dynamic and stable 3D walking gaits.
international conference on hybrid systems computation and control | 2014
Ayonga Hereid; Shishir Kolathaya; Mikhail S. Jones; Johnathan Van Why; Jonathan W. Hurst; Aaron D. Ames
This paper presents a methodology for achieving efficient multi-domain underactuated bipedal walking on compliant robots by formally emulating gaits produced by the Spring Loaded Inverted Pendulum (SLIP). With the goal of achieving locomotion that displays phases of double and single support, a hybrid system model is formulated that faithfully represents the full-order dynamics of a compliant walking robot. The SLIP model is used as a bases for constructing human-inspired controllers that yield a dimension reduction through the use of hybrid zero dynamics. This allows for the formulation of an optimization problem that produces hybrid zero dynamics that best represents a SLIP model walking gait, while simultaneously ensuring the proper reduction in dimensionality that can be utilized to produce stable periodic orbits, i.e., walking gaits. The end result is stable robotic walking in simulation and, when implemented on the compliant robot ATRIAS, experimentally realized dynamic multi-domain locomotion.
international conference on robotics and automation | 2013
Matthew J. Powell; Ayonga Hereid; Aaron D. Ames
This paper employs the Human-Inspired Control framework in the formal design, optimization and implementation of controllers for 3D bipedal robotic walking. In this framework, controllers drive the robot to a low-dimensional representation, termed the partial hybrid zero dynamics, which is shaped by the parameters of the outputs describing human locomotion data. The main result of this paper is the use of partial hybrid zero dynamics in an optimization problem to compute physical constraints on the robot, without integrating the dynamics of the system, and while simultaneously yielding provably stable walking controllers for a 3D robot model. Controllers corresponding to various walking speeds are obtained through a second speed regulation optimization, and formal methods are presented which provide smooth transitions between walking speeds. These formal results are demonstrated through simulation and utilized to obtain 3D walking experimentally with the NAO robot.
international conference on robotics and automation | 2016
Jacob Reher; Eric A. Cousineau; Ayonga Hereid; Christian M. Hubicki; Aaron D. Ames
This paper presents the methodology used to achieve efficient and dynamic walking behaviors on the prototype humanoid robotics platform, DURUS. As a means of providing a hardware platform capable of these behaviors, the design of DURUS combines highly efficient electromechanical components with “control in the loop” design of the leg morphology. Utilizing the final design of DURUS, a formal framework for the generation of dynamic walking gaits which maximizes efficiency by exploiting the full body dynamics of the robot, including the interplay between the passive and active elements, is developed. The gaits generated through this methodology form the basis of the control implementation experimentally realized on DURUS; in particular, the trajectories generated through the formal framework yield a feedforward control input which is modulated by feedback in the form of regulators that compensate for discrepancies between the model and physical system. The end result of the unified approach to control-informed mechanical design, formal gait design and regulator-based feedback control implementation is efficient and dynamic locomotion on the humanoid robot DURUS. In particular, DURUS was able to demonstrate dynamic locomotion at the DRC Finals Endurance Test, walking for just under five hours in a single day, traveling 3.9 km with a mean cost of transport of 1.61-the lowest reported cost of transport achieved on a bipedal humanoid robot.
Robotica | 2017
Huihua Zhao; Ayonga Hereid; Wen-Loong Ma; Aaron D. Ames
This paper presents a formal framework for achieving multi-contact bipedal robotic walking, and realizes this methodology experimentally on two robotic platforms: AMBER2 and Assume The Robot Is A Sphere (ATRIAS). Inspired by the key feature encoded in human walking—multi-contact behavior—this approach begins with the analysis of human locomotion and uses it to motivate the construction of a hybrid system model representing a multi-contact robotic walking gait. Human-inspired outputs are extracted from reference locomotion data to characterize the human model or the spring-loaded invert pendulum (SLIP) model, and then employed to develop the human-inspired control and an optimization problem that yields stable multi-domain walking. Through a trajectory reconstruction strategy motivated by the process that generates the walking gait, the mathematical constructions are successfully translated to the two physical robots experimentally.
IEEE Robotics & Automation Magazine | 2015
Neil Dantam; Daniel M. Lofaro; Ayonga Hereid; Paul Oh; Aaron D. Ames; Mike Stilman
Correct real-time software is vital for robots in safety-critical roles such as service and disaster response. These systems depend on software for locomotion, navigation, manipulation, and even seemingly innocuous tasks such as safely regulating battery voltage. A multiprocess software design increases robustness by isolating errors to a single process, allowing the rest of the system to continue operation. This approach also assists with modularity and concurrency. For real-time tasks, such as dynamic balance and force control of manipulators, it is critical to communicate the latest data sample with minimum latency. There are many communication approaches intended for both general-purpose and real-time needs [9], [13], [15], [17], [19]. Typical methods focus on reliable communication or network transparency and accept a tradeoff of increased message latency or the potential to discard newer data. By focusing instead on the specific case of real-time communication on a single host, we reduce communication latency and guarantee access to the latest sample. We present a new interprocess communication (IPC) library, Ach which addresses this need, and discuss its application for real-time multiprocess control on three humanoid robots (Figure 1). (Ach is available at http://www.golems.org/projects/ach.html. The name Ach comes from the common abbreviation for the motor neurotransmitter Acetylcholine and the computer networking term ACK.).
international conference on robotics and automation | 2015
Ayonga Hereid; Christian M. Hubicki; Eric A. Cousineau; Jonathan W. Hurst; Aaron D. Ames
Hybrid zero dynamics (HZD) has emerged as a popular framework for the stable control of bipedal robotic gaits, but typically designing a gaits virtual constraints is a slow and undependable optimization process. To expedite and boost the reliability of HZD gait generation, we borrow methods from trajectory optimization to formulate a smoother and more linear optimization problem. We present a multiple-shooting formulation for the optimization of virtual constraints, combining the stability-friendly properties of HZD with an optimization-conducive problem formulation. To showcase the implications of this recipe for improving gait generation, we use the same process to generate periodic planar walking gaits on two different robot models, and in one case, demonstrate stable walking on the hardware prototype, DURUS-R.
IEEE Access | 2017
Ayush Agrawal; Omar Harib; Ayonga Hereid; Sylvain Finet; Matthieu Masselin; Laurent Praly; Aaron D. Ames; Koushil Sreenath; Jessy W. Grizzle
This paper presents preliminary results toward translating gait and control design for bipedal robots to decentralized control of an exoskeleton aimed at restoring mobility to patients with lower limb paralysis, without the need for crutches. A mathematical hybrid dynamical model of the human-exoskeleton system is developed and a library of dynamically feasible periodic walking gaits for different walking speeds is found through nonlinear constrained optimization using the full-order dynamical system. These walking gaits are stabilized using a centralized (i.e., full-state information) hybrid zero dynamics-based controller, which is then decentralized (i.e., control actions use partial state information) so as to be implementable on the exoskeleton subsystem. A control architecture is then developed so as to allow the user to actively control the exoskeleton speed through his/her upper body posture. Numerical simulations are carried out to compare the two controllers. It is found that the proposed decentralized controller not only preserves the periodic walking gaits but also inherits the robustness to perturbations present in the centralized controller. Moreover, the proposed velocity regulation scheme is able to reach a steady state and track desired walking speeds under both, centralized, and decentralized schemes.
robotics: science and systems | 2013
Neil Dantam; Ayonga Hereid; Aaron D. Ames; Mike Stilman
Presented at the 2013 Robotics: Science and Systems Conference VII (RSS), 24-28 June 2013, Berlin, Germany.
conference on decision and control | 2016
Huihua Zhao; Ayonga Hereid; Eric R. Ambrose; Aaron D. Ames
Virtual constraints have been recognized as an essential bridging tool which has the potential to translate rich nonlinear bipedal control methodologies to the control of prostheses. In this paper, we propose a hybrid system model based two-step direct collocation approach to automatically generate three-dimensional (3D) human-like multi-contact prosthetic gaits (via virtual constraints) for an asymmetric amputee-prosthesis system model. Unimpaired human locomotion is studied first to provide a reference for this gait design method. Specific requirements-such as amputee comfortability, human-likeness, physical limitations for hardware implementation-are then discussed explicitly in order to quantify a well-designed prosthetic gait. A 29 degrees of freedom 3D unsymmetrical bipedal robotic model is considered to model the asymmetric amputee-prosthesis system. Imposing the prosthetic gait requirements as nonlinear constraints and utilizing the asymmetric 3D hybrid system model, a two-step direct collocation based optimization method is proposed to generate 3D prosthetic gaits automatically. The resulting prosthetic gait is analyzed in detail, showing the designed multi-contact gait is human-like, formally stable and optimal w.r.t the requirements.