Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ayse Demirkan is active.

Publication


Featured researches published by Ayse Demirkan.


Nature Communications | 2015

Novel loci affecting iron homeostasis and their effects in individuals at risk for hemochromatosis (vol 5, 4926, 2014)

Beben Benyamin; Tonu Esko; Janina S. Ried; Aparna Radhakrishnan; Sita H. Vermeulen; Michela Traglia; Martin Goegele; Denise Anderson; Linda Broer; Clara Podmore; Jian'an Luan; Zoltán Kutalik; Serena Sanna; Peter van der Meer; Toshiko Tanaka; Fudi Wang; Harm-Jan Westra; Lude Franke; Evelin Mihailov; Lili Milani; Jonas Haelldin; Juliane Winkelmann; Thomas Meitinger; Joachim Thiery; Annette Peters; Melanie Waldenberger; Augusto Rendon; Jennifer Jolley; Jennifer Sambrook; Lambertus A. Kiemeney

Corrigendum: Novel loci affecting iron homeostasis and their effects in individuals at risk for hemochromatosis


PLOS Genetics | 2009

Genetic determinants of circulating sphingolipid concentrations in European populations

Andrew A. Hicks; Peter P. Pramstaller; Åsa Johansson; Veronique Vitart; Igor Rudan; Peter Ugocsai; Yurii S. Aulchenko; Christopher S. Franklin; Gerhard Liebisch; Jeanette Erdmann; Inger Jonasson; Irina V. Zorkoltseva; Cristian Pattaro; Caroline Hayward; Aaron Isaacs; Christian Hengstenberg; Susan Campbell; Carsten Gnewuch; A. CecileJ.W. Janssens; Anatoly V. Kirichenko; Inke R. König; Fabio Marroni; Ozren Polašek; Ayse Demirkan; Ivana Kolcic; Christine Schwienbacher; Wilmar Igl; Zrinka Biloglav; Jacqueline C. M. Witteman; Irene Pichler

Sphingolipids have essential roles as structural components of cell membranes and in cell signalling, and disruption of their metabolism causes several diseases, with diverse neurological, psychiatric, and metabolic consequences. Increasingly, variants within a few of the genes that encode enzymes involved in sphingolipid metabolism are being associated with complex disease phenotypes. Direct experimental evidence supports a role of specific sphingolipid species in several common complex chronic disease processes including atherosclerotic plaque formation, myocardial infarction (MI), cardiomyopathy, pancreatic β-cell failure, insulin resistance, and type 2 diabetes mellitus. Therefore, sphingolipids represent novel and important intermediate phenotypes for genetic analysis, yet little is known about the major genetic variants that influence their circulating levels in the general population. We performed a genome-wide association study (GWAS) between 318,237 single-nucleotide polymorphisms (SNPs) and levels of circulating sphingomyelin (SM), dihydrosphingomyelin (Dih-SM), ceramide (Cer), and glucosylceramide (GluCer) single lipid species (33 traits); and 43 matched metabolite ratios measured in 4,400 subjects from five diverse European populations. Associated variants (32) in five genomic regions were identified with genome-wide significant corrected p-values ranging down to 9.08×10−66. The strongest associations were observed in or near 7 genes functionally involved in ceramide biosynthesis and trafficking: SPTLC3, LASS4, SGPP1, ATP10D, and FADS1–3. Variants in 3 loci (ATP10D, FADS3, and SPTLC3) associate with MI in a series of three German MI studies. An additional 70 variants across 23 candidate genes involved in sphingolipid-metabolizing pathways also demonstrate association (p = 10−4 or less). Circulating concentrations of several key components in sphingolipid metabolism are thus under strong genetic control, and variants in these loci can be tested for a role in the development of common cardiovascular, metabolic, neurological, and psychiatric diseases.


PLOS Genetics | 2012

Genome-Wide Association Study Identifies Novel Loci Associated with Circulating Phospho- and Sphingolipid Concentrations

Ayse Demirkan; Cornelia M. van Duijn; Peter Ugocsai; Aaron Isaacs; Peter P. Pramstaller; Gerhard Liebisch; James F. Wilson; Åsa Johansson; Igor Rudan; Yurii S. Aulchenko; Anatoly V. Kirichenko; A. Cecile J. W. Janssens; Ritsert C. Jansen; Carsten Gnewuch; Francisco S. Domingues; Cristian Pattaro; Sarah H. Wild; Inger Jonasson; Ozren Polasek; Irina V. Zorkoltseva; Albert Hofman; Lennart C. Karssen; Maksim Struchalin; James A B Floyd; Wilmar Igl; Zrinka Biloglav; Linda Broer; Arne Pfeufer; Irene Pichler; Susan Campbell

Phospho- and sphingolipids are crucial cellular and intracellular compounds. These lipids are required for active transport, a number of enzymatic processes, membrane formation, and cell signalling. Disruption of their metabolism leads to several diseases, with diverse neurological, psychiatric, and metabolic consequences. A large number of phospholipid and sphingolipid species can be detected and measured in human plasma. We conducted a meta-analysis of five European family-based genome-wide association studies (N = 4034) on plasma levels of 24 sphingomyelins (SPM), 9 ceramides (CER), 57 phosphatidylcholines (PC), 20 lysophosphatidylcholines (LPC), 27 phosphatidylethanolamines (PE), and 16 PE-based plasmalogens (PLPE), as well as their proportions in each major class. This effort yielded 25 genome-wide significant loci for phospholipids (smallest P-value = 9.88×10−204) and 10 loci for sphingolipids (smallest P-value = 3.10×10−57). After a correction for multiple comparisons (P-value<2.2×10−9), we observed four novel loci significantly associated with phospholipids (PAQR9, AGPAT1, PKD2L1, PDXDC1) and two with sphingolipids (PLD2 and APOE) explaining up to 3.1% of the variance. Further analysis of the top findings with respect to within class molar proportions uncovered three additional loci for phospholipids (PNLIPRP2, PCDH20, and ABDH3) suggesting their involvement in either fatty acid elongation/saturation processes or fatty acid specific turnover mechanisms. Among those, 14 loci (KCNH7, AGPAT1, PNLIPRP2, SYT9, FADS1-2-3, DLG2, APOA1, ELOVL2, CDK17, LIPC, PDXDC1, PLD2, LASS4, and APOE) mapped into the glycerophospholipid and 12 loci (ILKAP, ITGA9, AGPAT1, FADS1-2-3, APOA1, PCDH20, LIPC, PDXDC1, SGPP1, APOE, LASS4, and PLD2) to the sphingolipid pathways. In large meta-analyses, associations between FADS1-2-3 and carotid intima media thickness, AGPAT1 and type 2 diabetes, and APOA1 and coronary artery disease were observed. In conclusion, our study identified nine novel phospho- and sphingolipid loci, substantially increasing our knowledge of the genetic basis for these traits.


Biological Psychiatry | 2013

A Genome-Wide Association Study of Depressive Symptoms

Karin Hek; Ayse Demirkan; Jari Lahti; Antonio Terracciano; Alexander Teumer; Marilyn C. Cornelis; Najaf Amin; Erin Bakshis; Jens Baumert; Jingzhong Ding; Yongmei Liu; Kristin D. Marciante; Osorio Meirelles; Michael A. Nalls; Yan V. Sun; Nicole Vogelzangs; Lei Yu; Stefania Bandinelli; Emelia J. Benjamin; David A. Bennett; Dorret I. Boomsma; Alessandra Cannas; Laura H. Coker; Eco J. C. de Geus; Philip L. De Jager; Ana V. Diez-Roux; Shaun Purcell; Frank B. Hu; Eric B. Rimm; David J. Hunter

BACKGROUND Depression is a heritable trait that exists on a continuum of varying severity and duration. Yet, the search for genetic variants associated with depression has had few successes. We exploit the entire continuum of depression to find common variants for depressive symptoms. METHODS In this genome-wide association study, we combined the results of 17 population-based studies assessing depressive symptoms with the Center for Epidemiological Studies Depression Scale. Replication of the independent top hits (p<1×10(-5)) was performed in five studies assessing depressive symptoms with other instruments. In addition, we performed a combined meta-analysis of all 22 discovery and replication studies. RESULTS The discovery sample comprised 34,549 individuals (mean age of 66.5) and no loci reached genome-wide significance (lowest p = 1.05×10(-7)). Seven independent single nucleotide polymorphisms were considered for replication. In the replication set (n = 16,709), we found suggestive association of one single nucleotide polymorphism with depressive symptoms (rs161645, 5q21, p = 9.19×10(-3)). This 5q21 region reached genome-wide significance (p = 4.78×10(-8)) in the overall meta-analysis combining discovery and replication studies (n = 51,258). CONCLUSIONS The results suggest that only a large sample comprising more than 50,000 subjects may be sufficiently powered to detect genes for depressive symptoms.


Nature Communications | 2016

Genome-wide study for circulating metabolites identifies 62 loci and reveals novel systemic effects of LPA

Johannes Kettunen; Ayse Demirkan; Peter Würtz; Harmen H. M. Draisma; Toomas Haller; Rajesh Rawal; Anika A.M. Vaarhorst; Antti J. Kangas; Leo-Pekka Lyytikäinen; Matti Pirinen; René Pool; Antti-Pekka Sarin; Pasi Soininen; Taru Tukiainen; Qin Wang; Mika Tiainen; Tuulia Tynkkynen; Najaf Amin; Tanja Zeller; Marian Beekman; Joris Deelen; Ko Willems van Dijk; Tonu Esko; Jouke-Jan Hottenga; Elisabeth M. van Leeuwen; Terho Lehtimäki; Evelin Mihailov; Richard J. Rose; Anton J. M. de Craen; Christian Gieger

Genome-wide association studies have identified numerous loci linked with complex diseases, for which the molecular mechanisms remain largely unclear. Comprehensive molecular profiling of circulating metabolites captures highly heritable traits, which can help to uncover metabolic pathophysiology underlying established disease variants. We conduct an extended genome-wide association study of genetic influences on 123 circulating metabolic traits quantified by nuclear magnetic resonance metabolomics from up to 24,925 individuals and identify eight novel loci for amino acids, pyruvate and fatty acids. The LPA locus link with cardiovascular risk exemplifies how detailed metabolic profiling may inform underlying aetiology via extensive associations with very-low-density lipoprotein and triglyceride metabolism. Genetic fine mapping and Mendelian randomization uncover wide-spread causal effects of lipoprotein(a) on overall lipoprotein metabolism and we assess potential pleiotropic consequences of genetically elevated lipoprotein(a) on diverse morbidities via electronic health-care records. Our findings strengthen the argument for safe LPA-targeted intervention to reduce cardiovascular risk.


Nature Communications | 2015

Genome-wide association study identifies novel genetic variants contributing to variation in blood metabolite levels

Harmen H. M. Draisma; René Pool; Michael Kobl; Rick Jansen; Ann-Kristin Petersen; Anika A.M. Vaarhorst; Idil Yet; Toomas Haller; Ayse Demirkan; Tonu Esko; Gu Zhu; Stefan Böhringer; Marian Beekman; Jan B. van Klinken; Werner Römisch-Margl; Cornelia Prehn; Jerzy Adamski; Anton J. M. de Craen; Elisabeth M. van Leeuwen; Najaf Amin; Harish Dharuri; Harm-Jan Westra; Lude Franke; Eco J. C. de Geus; Jouke-Jan Hottenga; Gonneke Willemsen; Anjali K. Henders; Grant W. Montgomery; Dale R. Nyholt; John Whitfield

Metabolites are small molecules involved in cellular metabolism, which can be detected in biological samples using metabolomic techniques. Here we present the results of genome-wide association and meta-analyses for variation in the blood serum levels of 129 metabolites as measured by the Biocrates metabolomic platform. In a discovery sample of 7,478 individuals of European descent, we find 4,068 genome- and metabolome-wide significant (Z-test, P < 1.09 × 10(-9)) associations between single-nucleotide polymorphisms (SNPs) and metabolites, involving 59 independent SNPs and 85 metabolites. Five of the fifty-nine independent SNPs are new for serum metabolite levels, and were followed-up for replication in an independent sample (N = 1,182). The novel SNPs are located in or near genes encoding metabolite transporter proteins or enzymes (SLC22A16, ARG1, AGPS and ACSL1) that have demonstrated biomedical or pharmaceutical importance. The further characterization of genetic influences on metabolic phenotypes is important for progress in biological and medical research.


Journal of Psychiatric Research | 2013

Plasma phosphatidylcholine and sphingomyelin concentrations are associated with depression and anxiety symptoms in a Dutch family-based lipidomics study

Ayse Demirkan; Aaron Isaacs; Peter Ugocsai; Gerhard Liebisch; Maksim Struchalin; Igor Rudan; James F. Wilson; Peter P. Pramstaller; Ulf Gyllensten; Harry Campbell; Gerd Schmitz; Ben A. Oostra; Cornelia van Duijn

The central nervous system has the second highest concentration of lipids after adipose tissue. Alterations in neural membrane phospho- and sphingolipid composition can influence crucial intra- and intercellular signalling and alter the membranes properties. Recently, the polyunsaturated fatty acids (PUFA) hypothesis for depression suggests that phospho- and sphingolipid metabolism includes potential pathways for the disease. In 742 people from a Dutch family-based study, we assessed the relationships between 148 different plasma phospho- and sphingolipid species and depression/anxiety symptoms as measured by the Hospital Anxiety and Depression Scales (HADS-A and HADS-D) and the Centre for Epidemiological Studies Depression Scale (CES-D). We observed significant differences in plasma sphingomyelins (SPM), particularly the SPM 23:1/SPM 16:0 ratio, which was inversely correlated with depressive symptom scores. We observed a similar trend for plasma phosphatidylcholines (PC), particularly the molar proportion of PC O 36:4 and its ratio to ceramide CER 20:0. Absolute levels of PC O 36:4 were also associated with depression symptoms in an independent replication. To our knowledge this is the first study on depressive symptoms that focuses on specific phospho- and sphingolipid molecules in plasma rather than total PUFA concentrations. The findings of this lipidomic study suggests that plasma sphingomyelins and ether phospholipids should be further studied for their potential as biomarkers and for a better understanding of the underlying mechanisms of this systemic disease.


Diabetes Care | 2015

Effects of Metformin on Metabolite Profiles and LDL Cholesterol in Patients With Type 2 Diabetes

Tao Xu; Stefan Brandmaier; Ana C. Messias; Christian Herder; Harmen H. M. Draisma; Ayse Demirkan; Zhonghao Yu; Janina S. Ried; Toomas Haller; Margit Heier; Monica Campillos; Gisela Fobo; Renee Stark; Christina Holzapfel; Jonathan Adam; Shen Chi; Markus Rotter; Tommaso Panni; Anne S. Quante; Ying He; Cornelia Prehn; Werner Roemisch-Margl; Gabi Kastenmüller; Gonneke Willemsen; René Pool; Katarina Kasa; Ko Willems van Dijk; Thomas Hankemeier; Christa Meisinger; Barbara Thorand

OBJECTIVE Metformin is used as a first-line oral treatment for type 2 diabetes (T2D). However, the underlying mechanism is not fully understood. Here, we aimed to comprehensively investigate the pleiotropic effects of metformin. RESEARCH DESIGN AND METHODS We analyzed both metabolomic and genomic data of the population-based KORA cohort. To evaluate the effect of metformin treatment on metabolite concentrations, we quantified 131 metabolites in fasting serum samples and used multivariable linear regression models in three independent cross-sectional studies (n = 151 patients with T2D treated with metformin [mt-T2D]). Additionally, we used linear mixed-effect models to study the longitudinal KORA samples (n = 912) and performed mediation analyses to investigate the effects of metformin intake on blood lipid profiles. We combined genotyping data with the identified metformin-associated metabolites in KORA individuals (n = 1,809) and explored the underlying pathways. RESULTS We found significantly lower (P < 5.0E-06) concentrations of three metabolites (acyl-alkyl phosphatidylcholines [PCs]) when comparing mt-T2D with four control groups who were not using glucose-lowering oral medication. These findings were controlled for conventional risk factors of T2D and replicated in two independent studies. Furthermore, we observed that the levels of these metabolites decreased significantly in patients after they started metformin treatment during 7 years’ follow-up. The reduction of these metabolites was also associated with a lowered blood level of LDL cholesterol (LDL-C). Variations of these three metabolites were significantly associated with 17 genes (including FADS1 and FADS2) and controlled by AMPK, a metformin target. CONCLUSIONS Our results indicate that metformin intake activates AMPK and consequently suppresses FADS, which leads to reduced levels of the three acyl-alkyl PCs and LDL-C. Our findings suggest potential beneficial effects of metformin in the prevention of cardiovascular disease.


PLOS Genetics | 2015

Insight in Genome-Wide Association of Metabolite Quantitative Traits by Exome Sequence Analyses

Ayse Demirkan; Peter Henneman; Aswin Verhoeven; Harish Dharuri; Najaf Amin; Jan B. van Klinken; Lennart C. Karssen; Boukje de Vries; Axel Meissner; Sibel Göraler; Arn M. J. M. van den Maagdenberg; André M. Deelder; Peter A. C. 't Hoen; Cornelia M. van Duijn; Ko Willems van Dijk

Metabolite quantitative traits carry great promise for epidemiological studies, and their genetic background has been addressed using Genome-Wide Association Studies (GWAS). Thus far, the role of less common variants has not been exhaustively studied. Here, we set out a GWAS for metabolite quantitative traits in serum, followed by exome sequence analysis to zoom in on putative causal variants in the associated genes. 1H Nuclear Magnetic Resonance (1H-NMR) spectroscopy experiments yielded successful quantification of 42 unique metabolites in 2,482 individuals from The Erasmus Rucphen Family (ERF) study. Heritability of metabolites were estimated by SOLAR. GWAS was performed by linear mixed models, using HapMap imputations. Based on physical vicinity and pathway analyses, candidate genes were screened for coding region variation using exome sequence data. Heritability estimates for metabolites ranged between 10% and 52%. GWAS replicated three known loci in the metabolome wide significance: CPS1 with glycine (P-value  = 1.27×10−32), PRODH with proline (P-value  = 1.11×10−19), SLC16A9 with carnitine level (P-value  = 4.81×10−14) and uncovered a novel association between DMGDH and dimethyl-glycine (P-value  = 1.65×10−19) level. In addition, we found three novel, suggestively significant loci: TNP1 with pyruvate (P-value  = 1.26×10−8), KCNJ16 with 3-hydroxybutyrate (P-value  = 1.65×10−8) and 2p12 locus with valine (P-value  = 3.49×10−8). Exome sequence analysis identified potentially causal coding and regulatory variants located in the genes CPS1, KCNJ2 and PRODH, and revealed allelic heterogeneity for CPS1 and PRODH. Combined GWAS and exome analyses of metabolites detected by high-resolution 1H-NMR is a robust approach to uncover metabolite quantitative trait loci (mQTL), and the likely causative variants in these loci. It is anticipated that insight in the genetics of intermediate phenotypes will provide additional insight into the genetics of complex traits.


Alzheimers & Dementia | 2017

Metabolic network failures in Alzheimer's disease—A biochemical road map

Jon B. Toledo; Matthias Arnold; Gabi Kastenmüller; Rui Chang; Rebecca A. Baillie; Xianlin Han; Madhav Thambisetty; Jessica D. Tenenbaum; Karsten Suhre; J. Will Thompson; Lisa St. John-Williams; Siamak MahmoudianDehkordi; Daniel M. Rotroff; John Jack; Alison A. Motsinger-Reif; Shannon L. Risacher; Colette Blach; Joseph E. Lucas; Tyler Massaro; Gregory Louie; Hongjie Zhu; Guido Dallmann; Kristaps Klavins; Therese Koal; Sungeun Kim; Kwangsik Nho; Li Shen; Ramon Casanova; Sudhir Varma; Cristina Legido-Quigley

The Alzheimers Disease Research Summits of 2012 and 2015 incorporated experts from academia, industry, and nonprofit organizations to develop new research directions to transform our understanding of Alzheimers disease (AD) and propel the development of critically needed therapies. In response to their recommendations, big data at multiple levels are being generated and integrated to study network failures in disease. We used metabolomics as a global biochemical approach to identify peripheral metabolic changes in AD patients and correlate them to cerebrospinal fluid pathology markers, imaging features, and cognitive performance.

Collaboration


Dive into the Ayse Demirkan's collaboration.

Top Co-Authors

Avatar

Najaf Amin

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cornelia van Duijn

Erasmus University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Ko Willems van Dijk

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Sven J. van der Lee

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Albert Hofman

Erasmus University Rotterdam

View shared research outputs
Researchain Logo
Decentralizing Knowledge