Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ayşe Kılıç is active.

Publication


Featured researches published by Ayşe Kılıç.


Stem cell reports | 2013

Sca1-Derived Cells Are a Source of Myocardial Renewal in the Murine Adult Heart

Shizuka Uchida; Piera De Gaspari; Sawa Kostin; Katharina Jenniches; Ayşe Kılıç; Yasuhiro Izumiya; Ichiro Shiojima; Karsten grosse Kreymborg; Harald Renz; Kenneth Walsh; Thomas Braun

Summary Although the mammalian heart is one of the least regenerative organs in the body, recent evidence indicates that the myocardium undergoes a certain degree of renewal to maintain homeostasis during normal aging. However, the cellular origin of cardiomyocyte renewal has remained elusive due to lack of lineage tracing experiments focusing on putative adult cardiac precursor cells. We have generated triple-transgenic mice based on the tet-cre system to identify descendants of cells that have expressed the stem cell marker Sca1. We found a significant and lasting contribution of Sca1-derived cells to cardiomyocytes during normal aging. Ischemic damage and pressure overload resulted in increased differentiation of Sca1-derived cells to the different cell types present in the heart. Our results reveal a source of cells for cardiomyocyte renewal and provide a possible explanation for the limited contribution of Sca1-derived cells to myocardial repair under pathological conditions.


Molecular Pharmaceutics | 2014

Amphiphilic biodegradable PEG-PCL-PEI triblock copolymers for FRET-capable in vitro and in vivo delivery of siRNA and quantum dots.

Thomas Endres; Mengyao Zheng; Ayşe Kılıç; Agnieszka Turowska; Moritz Beck-Broichsitter; Harald Renz; Olivia M. Merkel; Thomas Kissel

Amphiphilic triblock copolymers represent a versatile delivery platform capable of co-delivery of nucleic acids, drugs, and/or dyes. Multifunctional cationic triblock copolymers based on poly(ethylene glycol), poly-ε-caprolactone, and polyethylene imine, designed for the delivery of siRNA, were evaluated in vitro and in vivo. Moreover, a nucleic acid-unpacking-sensitive imaging technique based on quantum dot-mediated fluorescence resonance energy transfer (QD-FRET) was established. Cell uptake in vitro was measured by flow cytometry, whereas transfection efficiencies of nanocarriers with different hydrophilic block lengths were determined in vitro and in vivo by quantitative real-time PCR. Furthermore, after the proof of concept was demonstrated by fluorescence spectroscopy/microscopy, a prototype FRET pair was established by co-loading QDs and fluorescently labeled siRNA. The hydrophobic copolymer mediated a 5-fold higher cellular uptake and good knockdown efficiency (61 ± 5% in vitro, 55 ± 18% in vivo) compared to its hydrophilic counterpart (13 ± 6% in vitro, 30 ± 17% in vivo), which exhibited poor performance. FRET was demonstrated by UV-induced emission of the acceptor dye. Upon complex dissociation, which was simulated by the addition of heparin, a dose-dependent decrease in FRET efficiency was observed. We believe that in vitro/in vivo correlation of the structure and function of polymeric nanocarriers as well as sensitive imaging functionality for mechanistic investigations are prerequisites for a more rational design of amphiphilic gene carriers.


Biomaterials | 2012

Enhancing in vivo circulation and siRNA delivery with biodegradable polyethylenimine-graft-polycaprolactone-block-poly(ethylene glycol) copolymers

Mengyao Zheng; Damiano Librizzi; Ayşe Kılıç; Yu Liu; Harald Renz; Olivia M. Merkel; Thomas Kissel

The purpose of this study was to enhance the in vivo blood circulation time and siRNA delivery efficiency of biodegradable copolymers polyethylenimine-graft-polycaprolactone-block-poly(ethylene glycol) (hy-PEI-g-PCL-b-PEG) by introducing high graft densities of PCL-PEG chains. SYBR(®) Gold and heparin assays indicated improved stability of siRNA/copolymer-complexes with a graft density of 5. At N/P 1, only 40% siRNA condensation was achieved with non-grafted polymer, but 95% siRNA was condensed with copolymer PEI25k-(PCL570-PEG5k)(5). Intracellular uptake studies with confocal laser scanning microscopy and flow cytometry showed that the cellular uptake was increased with graft density, and copolymer PEI25k-(PCL570-PEG5k)(5) was able to deliver siRNA much more efficiently into the cytosol than into the nucleus. The in vitro knockdown effect of siRNA/hyPEI-g-PCL-b-PEG was also significantly improved with increasing graft density, and the most potent copolymer PEI25k-(PCL570-PEG5k)(5) knocked down 84.43% of the GAPDH expression. Complexes of both the copolymers with graft density 3 and 5 circulated much longer than unmodified PEI25 kDa and free siRNA, leading to a longer elimination half-life, a slower clearance and a three- or fourfold increase of the AUC compared to free siRNA, respectively. We demonstrated that the graft density of the amphiphilic chains can enhance the siRNA delivery efficiency and blood circulation, which highlights the development of safe and efficient non-viral polymeric siRNA nanocarriers that are especially stable and provide longer circulation in vivo.


Clinical & Experimental Allergy | 2009

Comparison of adjuvant and adjuvant-free murine experimental asthma models

Melanie L. Conrad; A. Ö. Yildirim; S. S. Sonar; Ayşe Kılıç; S. Sudowe; M. Lunow; R. Teich; Harald Renz; Holger Garn

Introduction The most widely used protocol for the induction of experimental allergic airway inflammation in mice involves sensitization by intraperitoneal (i.p.) injections of the antigen ovalbumin (OVA) used in conjunction with the adjuvant aluminium hydroxide (alum). Although adjuvants are frequently used, there are questions regarding the necessity of alum for murine asthma studies due to the non‐physiological nature of this chemical.


Journal of Clinical Investigation | 2010

Antagonism of TIM-1 blocks the development of disease in a humanized mouse model of allergic asthma

Sanchaita Sonar; Yen-Ming Hsu; Melanie L. Conrad; Gerard R. Majeau; Ayşe Kılıç; Ellen Garber; Yan Gao; Chioma Nwankwo; Gundi Willer; Jan C. Dudda; Hellen Kim; Veronique Bailly; Axel Pagenstecher; Paul D. Rennert; Harald Renz

Studies in mice and humans have revealed that the T cell, immunoglobulin, mucin (TIM) genes are associated with several atopic diseases. TIM-1 is a type I membrane protein that is expressed on T cells upon stimulation and has been shown to modulate their activation. In addition to a recently described interaction with dendritic cells, TIM-1 has also been identified as a phosphatidylserine recognition molecule, and several protein ligands have been proposed. Our understanding of its activity is complicated by the possibility that TIM-1 possesses multiple and diverse binding partners. In order to delineate the function of TIM-1, we generated monoclonal antibodies directed to a cleft formed within the IgV domain of TIM-1. We have shown here that antibodies that bind to this defined cleft antagonize TIM-1 binding to specific ligands and cells. Notably, these antibodies exhibited therapeutic activity in a humanized SCID model of experimental asthma, ameliorating inflammation, and airway hyperresponsiveness. Further experiments demonstrated that the effects of the TIM-1-specific antibodies were mediated via suppression of Th2 cell proliferation and cytokine production. These results demonstrate that modulation of the TIM-1 pathway can critically influence activated T cells in a humanized disease model, suggesting that TIM-1 antagonists may provide potent therapeutic benefit in asthma and other immune-mediated disorders.


Journal of Controlled Release | 2016

Targeted delivery of siRNA to activated T cells via transferrin-polyethylenimine (Tf-PEI) as a potential therapy of asthma.

Yuran Xie; Na Hyung Kim; Venkatareddy Nadithe; Dana Schalk; Archana Thakur; Ayşe Kılıç; Lawrence G. Lum; David J. P. Bassett; Olivia M. Merkel

Asthma is a worldwide health problem. Activated T cells (ATCs) in the lung, particularly T helper 2 cells (Th2), are strongly associated with inducing airway inflammatory responses and chemoattraction of inflammatory cells in asthma. Small interfering RNA (siRNA) as a promising anti-sense molecule can specifically silence inflammation related genes in ATCs, however, lack of safe and efficient siRNA delivery systems limits the application of siRNA as a therapeutic molecule in asthma. Here, we designed a novel pulmonary delivery system of siRNA, transferrin-polyethylenimine (Tf-PEI), to selectively deliver siRNA to ATCs in the lung. Tf-PEI polyplexes demonstrated optimal physicochemical properties such as size, distribution, zeta-potential, and siRNA condensation efficiency. Moreover, in vitro studies showed significantly enhanced cellular uptake and gene knockdown mediated by Tf-PEI polyplexes in human primary ATCs. Biodistribution of polyplexes in a murine asthmatic model confirmed that Tf-PEI polyplexes can efficiently and selectively deliver siRNA to ATCs. In conclusion, the present work proves the feasibility to target ATCs in asthma via Tf receptor. This strategy could potentially be used to design an efficient siRNA delivery system for asthma therapy.


The Journal of Allergy and Clinical Immunology | 2011

Nerve growth factor induces type III collagen production in chronic allergic airway inflammation.

Ayşe Kılıç; S. Sonar; Ali Oender Yildirim; Heinz Fehrenbach; Wolfgang Andreas Nockher; Harald Renz

BACKGROUND Excessive extracellular matrix deposition occurs as a result of repetitive injury-repair cycles and plays a central role in the pathogenesis of chronic inflammatory diseases, such as allergic asthma. The molecular mechanism leading to aberrant collagen deposition is not fully understood. OBJECTIVE We sought to test the hypothesis that increased nerve growth factor (NGF) production contributes to collagen deposition in the airways during chronic allergic airway inflammation. METHODS Antibody-blocking experiments were performed in an in vivo model for chronic allergic airway inflammation (allergic asthma), which is accompanied by matrix deposition in the subepithelial compartment of the airways, to study the profibrotic effect of NGF. The signaling pathways were delineated with in vivo and in vitro studies in primary lung fibroblasts. RESULTS Functional blocking of NGF in chronically affected mice markedly prevented subepithelial fibrosis. Transgenic overexpression of NGF in murine airways resulted in altered airway wall morphology with increased peribronchial collagen deposition and impaired lung physiology in the absence of inflammation. NGF exerted a direct effect on collagen expression in murine lung fibroblasts, which was mainly mediated through the activation of the receptor tropomyosin-related kinase A. NGF-induced collagen expression was dependent on downstream activation of p38 mitogen-activated protein kinase independent of the TGF-β1/mothers against decapentaplegic homolog (SMAD) pathway. CONCLUSION The results of this study demonstrate that NGF exerts profibrotic activities in the airways by inducing type III collagen production in fibroblasts independently of TGF-β1.


PLOS ONE | 2014

Compartmental and Temporal Dynamics of Chronic Inflammation and Airway Remodelling in a Chronic Asthma Mouse Model

Mohammed Alrifai; Leigh Marsh; Tanja Dicke; Ayşe Kılıç; Melanie L. Conrad; Harald Renz; Holger Garn

Background Allergic asthma is associated with chronic airway inflammation and progressive airway remodelling. However, the dynamics of the development of these features and their spontaneous and pharmacological reversibility are still poorly understood. We have therefore investigated the dynamics of airway remodelling and repair in an experimental asthma model and studied how pharmacological intervention affects these processes. Methods Using BALB/c mice, the kinetics of chronic asthma progression and resolution were characterised in absence and presence of inhaled corticosteroid (ICS) treatment. Airway inflammation and remodelling was assessed by the analysis of bronchoalveolar and peribronichal inflammatory cell infiltrate, goblet cell hyperplasia, collagen deposition and smooth muscle thickening. Results Chronic allergen exposure resulted in early (goblet cell hyperplasia) and late remodelling (collagen deposition and smooth muscle thickening). After four weeks of allergen cessation eosinophilic inflammation, goblet cell hyperplasia and collagen deposition were resolved, full resolution of lymphocyte inflammation and smooth muscle thickening was only observed after eight weeks. ICS therapy when started before the full establishment of chronic asthma reduced the development of lung inflammation, decreased goblet cell hyperplasia and collagen deposition, but did not affect smooth muscle thickening. These effects of ICS on airway remodelling were maintained for a further four weeks even when therapy was discontinued. Conclusions Utilising a chronic model of experimental asthma we have shown that repeated allergen exposure induces reversible airway remodelling and inflammation in mice. Therapeutic intervention with ICS was partially effective in inhibiting the transition from acute to chronic asthma by reducing airway inflammation and remodelling but was ineffective in preventing smooth muscle hypertrophy.


Chemical immunology and allergy | 2012

Neurotrophins in Chronic Allergic Airway Inflammation and Remodeling

Harald Renz; Ayşe Kılıç

Allergic asthma is a chronic inflammatory disease characterized by the production of allergen-specific IgE antibodies, TH2 inflammation, airway hyperresponsiveness and airway remodeling. Airway remodeling represents the disease-limiting stage during disease progression, and the underlying cellular molecular network resulting in airway remodeling are still poorly defined. In addition to the well-established TH2-dependent inflammatory response, several lines of investigation reveal that this regulation in the peripheral central nervous system contributes to disease development, exacerbation and progression. Several members of the neurotrophin family (e.g. nerve growth factor, brain-derived neurotrophic factor) are important transmitters of signals between the immune and the nervous system. Recent data indicate that NGF contributes to the development of airway remodeling in an inflammation and TGF-independent manner. These and other data open the opportunity to therapeutically interfere also on this level of regulation as a novel approach.


Hippocampus | 2017

Aberrant cognitive phenotypes and altered hippocampal BDNF expression related to epigenetic modifications in mice lacking the post-synaptic scaffolding protein SHANK1: Implications for autism spectrum disorder

A. Özge Sungur; Magdalena C.E. Jochner; Hani Harb; Ayşe Kılıç; Holger Garn; Rainer K.W. Schwarting; Markus Wöhr

Autism spectrum disorder (ASD) is a class of neurodevelopmental disorders characterized by persistent deficits in social communication/interaction, together with restricted/repetitive patterns of behavior. ASD is among the most heritable neuropsychiatric conditions, and while available evidence points to a complex set of genetic factors, the SHANK gene family has emerged as one of the most promising candidates. Here, we assessed ASD‐related phenotypes with particular emphasis on social behavior and cognition in Shank1 mouse mutants in comparison to heterozygous and wildtype littermate controls across development in both sexes. While social approach behavior was evident in all experimental conditions and social recognition was only mildly affected by genotype, Shank1−/− null mutant mice were severely impaired in object recognition memory. This effect was particularly prominent in juveniles, not due to impairments in object discrimination, and replicated in independent mouse cohorts. At the neurobiological level, object recognition deficits were paralleled by increased brain‐derived neurotrophic factor (BDNF) protein expression in the hippocampus of Shank1−/− mice; yet BDNF levels did not differ under baseline conditions. We therefore investigated changes in the epigenetic regulation of hippocampal BDNF expression and detected an enrichment of histone H3 acetylation at the Bdnf promoter1 in Shank1−/− mice, consistent with increased learning‐associated BDNF. Together, our findings indicate that Shank1 deletions lead to an aberrant cognitive phenotype characterized by severe impairments in object recognition memory and increased hippocampal BDNF levels, possibly due to epigenetic modifications. This result supports the link between ASD and intellectual disability, and suggests epigenetic regulation as a potential therapeutic target.

Collaboration


Dive into the Ayşe Kılıç's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Heinz Fehrenbach

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S. Sonar

University of Marburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shizuka Uchida

University of Louisville

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge