Aysegul Keser
Ege University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Aysegul Keser.
Neuropharmacology | 2010
Gorkem Yararbas; Aysegul Keser; Lutfiye Kanit; Sakire Pogun
To elucidate sex differences in nicotine addiction and the underlying mechanisms of the conditioning aspects of nicotine, nicotine-induced conditioned place preference (CPP) was evaluated in male and female Sprague Dawley rats using a three-chambered CPP apparatus and a biased design. In a series of experiments, the dose-response curve was obtained, pairings between the drug and initially non-preferred versus preferred compartments were compared, and the involvement of mGluR5 receptors in nicotine-induced CPP was evaluated. Modulation of nicotine-induced CPP with mGluR5 inhibition was obtained by MPEP (2-methyl-6-(phenylethynyl)-pyridine hydrochloride). Our results show that nicotine induces CPP dose-dependently in male rats but not in female rats. The comparison of the biased protocol, pairing nicotine with the initially preferred and non-preferred chambers, indicated that nicotine-induced CPP in male rats under both conditions, but the effect was stronger when nicotine was paired with the initially non-preferred side. The selective mGluR5 antagonist MPEP inhibited nicotine-induced CPP in male rats. In conclusion, the results of the current study in rats demonstrate that the conditioning effect of nicotine is more important in males than in females. Furthermore, in line with reported findings, our results suggest that mGluR5 antagonism may be therapeutically useful in smoking cessation during the maintenance of smoking behavior when conditioning plays an important role, notwithstanding the fact that this effect is observed only in male rats, not in females.
Life Sciences | 2012
Kamil Dayan; Aysegul Keser; Sibel Konyalioglu; Mete Erturk; Figen Aydin; Gulgun Sengul; Taner Dagci
AIMS Although hyperbaric oxygen (HBO) treatment following spinal cord injury (SCI) have been studied in terms of neurological function and tissue histology, there is a limited number studies on spinal cord tissue enzyme levels. MAIN METHODS The effect of HBO treatment in SCI was investigated by measuring superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx), nitric oxide synthase (NOS) and nitric oxide (NO) activity in the injured tissue. SCI was induced by applying an aneurysm clip extradurally at the level of T9-T11 vertebrae. Preoperative HBO (preopHBO) treatment was applied for 5days and postoperative HBO (postopHBO) for 7days. KEY FINDINGS In the preopHBO group, a significant decrease was observed in NOS and NO compared to the SCI group. There was a decrease in SOD, NOS and NO in the postopHBO group when compared to the SCI group. In the pre-postHBO group SOD, GPx, NOS and NO decreased significantly. There was a decrease in SOD in postopHBO compared to preopHBO. In the prepostopHBO, SOD decreased significantly compared to that in the preopHBO group. The prepostopHBO presented a significant decrease in GPx compared to postopHBO (p<0.05 for all parameters). No significant difference was observed for catalase for all groups. Significant improvement was found in BBB scores for both postopHBO and prepostHBO groups when compared to the SCI group (p<0.05). SIGNIFICANCE HBO treatment was found to be beneficial following SCI in terms of biochemical parameters and functional recovery in the postoperative period.
Brain Research | 2012
Burcu Balkan; Aysegul Keser; Oguz Gozen; Ersin O. Koylu; Taner Dagci; Michael J. Kuhar; Sakire Pogun
CART mRNA and peptides are highly expressed in the anatomical structures composing the hypothalamo-pituitary-adrenal (HPA) axis and sympatho-adrenal system. Anatomical and functional studies suggest that CART peptides may have a role in the regulation of the neuroendocrine and autonomic responses during stress. Our previous study showed that CART peptides increased significantly in the male hypothalamus and amygdala 10min after the forced swim stress. The present study aimed to examine the effect of forced swim stress on CART peptide expression in selected brain regions, including those where CART peptide expression has not been reported before (frontal cortex, pons, medulla oblongata), as well as in endocrine glands related to stress in male Sprague Dawley rats. A total of 16 (n=8) animals were used, including control groups. Rats were subjected to forced swim on two consecutive days, and sacrificed on the second day, 2h after the termination of the stress procedure. Frontal cortex, pons, medulla oblongata, hypothalamus, pituitary and adrenal glands were dissected and homogenized. CART peptide expression in these tissues was measured by Western Blotting and six different CART peptide fragments were identified. Our results showed that forced swim stress elicited region-specific changes in CART peptide expression. CART was upregulated in the frontal cortex, hypothalamus, medulla oblongata and adrenal gland while there was no change in the pons and pituitary. Enhanced CART peptide fragments in these brain regions and adrenal glands may have a role in the regulation of the HPA and sympatho-adrenal axis activity during stress response.
Brain Research | 2011
Aysegul Keser; Burcu Balkan; Oguz Gozen; Lutfiye Kanit; Sakire Pogun
NO (nitric oxide) produced in limbic brain regions has important roles in the regulation of autonomic nervous system and HPA axis activity, anxiety, fear learning, long-term memory formation, and depression. NO is synthesized from l-arginine in a reaction catalyzed by nitric oxide synthase (NOS). Neuronal nitric oxide synthase (nNOS), one of the three isoforms of NOS, is synthesized constitutively in nerve cells. Increasing evidence indicates that nNOS expression in the nervous system may be regulated by stress and nicotinic receptors. Furthermore, data obtained from several studies suggest that signaling pathways induced by stress and nicotinic receptors may converge on various signal transduction molecules to regulate nNOS expression in brain. In the present study, we used Western Blot analysis to test the effect of forced swim stress, chronic nicotine administration, and the combined effect of both procedures on nNOS expression in the hippocampus, amygdala and frontal cortex of the male and female rat brain. Basal nNOS levels of the three brain regions examined did not show sex differences. However, forced swim stress and chronic nicotine administration increased nNOS expression in the hippocampus of female rats. When stress and nicotine were applied together, no additional increment was observed. Stress and nicotine did not regulate nNOS expression in the amygdala and the frontal cortex of either sex. Data obtained from the present study indicate that the regulation of stress and nicotine induced-nNOS expression in rat hippocampus shows sexual dimorphism and nNOS expression in the female rat hippocampus increases by nicotine and stress.
Brain Research | 2012
Burcu Balkan; Oguz Gozen; Ersin O. Koylu; Aysegul Keser; Michael J. Kuhar; Sakire Pogun
Cocaine and amphetamine regulated transcript (CART) mRNA and peptides are highly expressed in the paraventricular (PVN), dorsomedial (DMH) and arcuate (ARC) nuclei of the hypothalamus. It has been suggested that these nuclei regulate the hypothalamic-pituitary-adrenal (HPA) axis, autonomic nervous system activity, and feeding behavior. Our previous studies showed that forced swim stress augmented CART peptide expression significantly in whole hypothalamus of male rats. In another study, forced swim stress increased the number of CART-immunoreactive cells in female PVN, whereas no effect was observed in male PVN or in the ARC nucleus of either sex. In the present study, we evaluated the effect of forced swim stress on CART mRNA expression in PVN, DMH and ARC nuclei in both male and female rats. Twelve male (stressed and controls, n=6 each) and 12 female (stressed and controls, n=6 each) Sprague-Dawley rats were used. Control animals were only handled, whereas forced swim stress procedure was applied to the stressed groups. Brains were dissected and brain sections containing PVN, DMH and ARC nuclei were prepared. CART mRNA levels were determined by in situ hybridization. In male rats, forced swim stress upregulated CART mRNA expression in DMH and downregulated it in the ARC. In female rats, forced swim stress increased CART mRNA expression in PVN and DMH, whereas a decrease was observed in the ARC nucleus. Our results show that forced swim stress elicits region- and sex-specific changes in CART mRNA expression in rat hypothalamus that may help in explaining some of the effects of stress.
Neuroscience Letters | 2013
Aysegul Keser; Tanseli Nesil; Lutfiye Kanit; Sakire Pogun
Nicotine addiction is a serious health problem resulting in millions of preventable deaths worldwide. The gas messenger molecule nitric oxide (NO) plays a critical role in addiction, and nicotine increases nitric oxide metabolites (NOx) in the brain. Understanding the factors which underlie individual differences in nicotine preference and intake is important for developing effective therapeutic strategies for smoking cessation. The present study aimed to assess NO activity, by measuring its stable metabolites, in three brain regions that express high levels of nicotinic acetylcholine receptors in rats preselected for nicotine preference. Rats (n=88) were exposed to two-bottle, free choice of oral nicotine/water starting either as adolescents or adults; control animals received only water under identical conditions. Following 12 or six weeks of exposure, levels of NOx (nitrite+nitrate), were determined in the hippocampus, frontal cortex, and amygdala. Since the rats were singly housed during oral nicotine treatment, naïve rats were also included in the study to evaluate the effect of isolation stress. Isolation stress increased NOx in the hippocampus. Nicotine preference did not have a significant effect on NO activity, but rats with adolescent exposure had higher NOx levels in the frontal cortex compared to adult-onset rats. Our findings suggest that nicotine exposure during adolescence, regardless of the amount of nicotine consumed, results in higher NO activity in the frontal cortex of rats, which persists through adulthood.
Pharmacological Reports | 2015
Guliz Armagan; Aysegul Keser; Cigdem Atalayin; Taner Dagci
BACKGROUND N-methyl-d-aspartate (NMDA) receptors are major pharmacological targets to prevent or reduce the progression of neurodegenerative diseases. Successful therapy with NMDA receptor antagonists in humans has been limited by the severe side effects of complete receptor blockade. The aim of the present study was to investigate the possible protective effects of tideglusib against NMDA receptor overactivation in neural stem cells. METHODS We measured the alteration in membrane integrity, free radical generation, intracellular Ca(2+) accumulation, mitochondrial membrane potential (MMP)/mitochondrial morphology and glycogen synthase kinase-3 (α/β isoforms and phospho-GSK-3α/β) protein expression levels following treatments. RESULTS NMDA treatment, with or without d-serine, significantly increased LDH leakage and triggered cell death in neural stem cells. Reactive oxygen species (ROS) formation and intracellular Ca(2+) levels were increased following NMDA receptor overactivation. The significant reduction in MMP was found in NMDA/d-serine-treated cells. Tideglusib significantly decreased ROS production and membrane degradation, but did not change intracellular Ca(2+) levels following NMDA receptor activation. Both in the presence or in the absence of NMDA/d-serine, tideglusib increased MMP and the levels of phospho-GSK-3β in NSCs. Moreover, GW9662 (a peroxisome-proliferator-activated receptor gamma (PPARγ) antagonist) treatment significantly inhibited the protective effect of tideglusib in NMDA/d-serine-treated cells. CONCLUSION Our study provides the evidence that GSK-3β and PPARγ may be directly involved in pathways leading to NMDA receptor-induced cell death and that the inhibitors including tideglusib may exert neuroprotective effect against these receptor overactivation.
Neuroscience Letters | 2017
Damla E. Tapinc; Rabia Ilgin; Egemen Kaya; Oguz Gozen; Muzeyyen Ugur; Ersin O. Koylu; Lutfiye Kanit; Aysegul Keser; Burcu Balkan
Pro-opiomelanocortin (POMC)-derived peptides and their receptors have been shown to play important roles in natural and drug-induced reward and reinforcement. Reward process may involve the regulation of POMC gene expression and the gene expression of POMC-derived peptide receptors. The present study investigated the alterations observed in the transcript levels of POMC, melanocortin 3 (MC3R), melanocortin 4 (MC4R) and mu-opioid receptors (MOR) in the hypothalamus and mesocorticolimbic system during nicotine exposure. Rats were injected subcutaneously for 5days with one of the three doses (0.2, 0.4 or 0.6mg/kg/day, free base) of nicotine and were decapitated one hour after a challenge dose on the sixth day. mRNA levels of POMC in the hypothalamus, MC3R in the ventral tegmental area (VTA), MC4R and MOR in the medial prefrontal cortex (mPFC), nucleus accumbens, dorsal striatum, amygdala, lateral hypothalamic area and VTA were measured by quantitative real-time PCR. Our results showed that treatment with 0.6mg/kg/day nicotine upregulated POMC mRNA in the hypothalamus and MC4R mRNA in the mPFC. Additionally, all three nicotine doses increased MC3R mRNA expression in the VTA. On the other hand, none of the nicotine doses altered MOR mRNA levels in the mesocorticolimbic system and associated limbic structures. These results suggest that nicotine may enhance melanocortin signaling in the mesocorticolimbic system and this alteration may be an important mechanism mediating nicotine reward.
Life Sciences | 2011
Taner Dagci; Gulgun Sengul; Aysegul Keser; Aytül Önal
AIMS The aim of this study is to determine the role of nitric oxide (NO) in neuropathic pain and the effect of embryonic neural stem cell (ENSC) transplantation on NO content in rat spinal cord neurons following spinal cord injury (SCI). MAIN METHODS Ninety adult male Sprague-Dawley rats were divided into 3 groups (n=30, each): control (laminectomy), SCI (hemisection at T12-T13 segments) and SCI+ENSC. Each group was further divided into sub-groups (n=5 each) based on the treatment substance (L-NAME, 75 mg/kg/i.p.; L-arginine, 225 mg/kg/i.p.; physiological saline, SF) and duration (2h for acute and 28 days for chronic groups). Pain was assessed by tail flick and Randall-Selitto tests. Fos immunohistochemistry and NADPH-d histochemistry were performed in segments 2 cm rostral and caudal to SCI. KEY FINDINGS Tail-flick latency time increased in both acute and chronic L-NAME groups and increased in acute and decreased in chronic L-arginine groups. The number of Fos (+) neurons decreased in acute and chronic L-NAME and decreased in acute L-arginine groups. Following ENSC, Fos (+) neurons did not change in acute L-NAME but decreased in the chronic L-NAME groups, and decreased in both acute and chronic L-arginine groups. NADPH-d (+) neurons decreased in acute L-NAME and increased in L-arginine groups with and without ENSC transplantation. SIGNIFICANCE This study confirms the role of NO in neuropathic pain and shows an improvement following ENSC transplantation in the acute phase, observed as a decrease in Fos(+) and NADPH-d (+) neurons in spinal cord segments rostral and caudal to injury.
Life Sciences | 2010
Aytül Önal; Gulgun Kayalioglu; Ayşe Parlar; Aysegul Keser; Sibel Ülker
AIMS This study aimed to investigate the effect of prolonged administration of bovine milk lactoferrin (bLF) on hyperalgesia and allodynia in a rat model of neuropathic pain and to determine the involvement of c-Fos, TNF-alpha, nitric oxide and opioidergic systems in this effect. MAIN METHODS Neuropathic pain was induced in rats by loose ligation of the right sciatic nerve and evaluated by tests measuring the mechanical and thermal hyperalgesia and allodynia. bLF (50, 100, and 200mg/kg) alone or in combination with opioidergic antagonists were administered intraperitoneally to the rats with neuropathic pain. c-Fos and NADPH-d immunocytochemistry and Western blotting for TNF-alpha, iNOS and nNOS were performed in the lumbar spinal cord of rats. Plasma TNF-alpha levels were determined with ELISA. KEY FINDINGS Prolonged, but not single, administration of bLF produced antihyperalgesic and antiallodynic effects in neuropathic rats. Pretreatment with opioidergic antagonists significantly decreased this effect. Prolonged administration of bLF decreased c-Fos and NADPH-d immunoreactivity and TNF-alpha and iNOS expressions at 50 and 100mg/kg and nNOS expression at 100mg/kg in the lumbar spinal cord of neuropathic rats. Plasma TNF-alpha levels remained unchanged after bLF treatment. SIGNIFICANCE Prolonged administration of bLF exerts antihyperalgesic and antiallodynic effect in neuropathic rats; down-regulation of both TNF-alpha and iNOS expressions and potentiation of opioidergic system in the lumbar spinal cord can contribute to this effect.