Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ayşegül Özen is active.

Publication


Featured researches published by Ayşegül Özen.


PLOS Pathogens | 2012

The Molecular Basis of Drug Resistance against Hepatitis C Virus NS3/4A Protease Inhibitors

Keith P. Romano; Akbar Ali; Cihan Aydin; Djadé I. Soumana; Ayşegül Özen; Laura M. Deveau; Casey Silver; Hong Cao; Alicia Newton; Christos J. Petropoulos; Wei Huang; Celia A. Schiffer

Hepatitis C virus (HCV) infects over 170 million people worldwide and is the leading cause of chronic liver diseases, including cirrhosis, liver failure, and liver cancer. Available antiviral therapies cause severe side effects and are effective only for a subset of patients, though treatment outcomes have recently been improved by the combination therapy now including boceprevir and telaprevir, which inhibit the viral NS3/4A protease. Despite extensive efforts to develop more potent next-generation protease inhibitors, however, the long-term efficacy of this drug class is challenged by the rapid emergence of resistance. Single-site mutations at protease residues R155, A156 and D168 confer resistance to nearly all inhibitors in clinical development. Thus, developing the next-generation of drugs that retain activity against a broader spectrum of resistant viral variants requires a comprehensive understanding of the molecular basis of drug resistance. In this study, 16 high-resolution crystal structures of four representative protease inhibitors – telaprevir, danoprevir, vaniprevir and MK-5172 – in complex with the wild-type protease and three major drug-resistant variants R155K, A156T and D168A, reveal unique molecular underpinnings of resistance to each drug. The drugs exhibit differential susceptibilities to these protease variants in both enzymatic and antiviral assays. Telaprevir, danoprevir and vaniprevir interact directly with sites that confer resistance upon mutation, while MK-5172 interacts in a unique conformation with the catalytic triad. This novel mode of MK-5172 binding explains its retained potency against two multi-drug-resistant variants, R155K and D168A. These findings define the molecular basis of HCV N3/4A protease inhibitor resistance and provide potential strategies for designing robust therapies against this rapidly evolving virus.


Viruses | 2010

Molecular Basis for Drug Resistance in HIV-1 Protease

Akbar Ali; Rajintha M. Bandaranayake; Yufeng Cai; Nancy M. King; Madhavi Kolli; Seema Mittal; Jennifer F. Murzycki; Madhavi N. L. Nalam; Ellen A. Nalivaika; Ayşegül Özen; Moses Prabu-Jeyabalan; Kelly Thayer; Celia A. Schiffer

HIV-1 protease is one of the major antiviral targets in the treatment of patients infected with HIV-1. The nine FDA approved HIV-1 protease inhibitors were developed with extensive use of structure-based drug design, thus the atomic details of how the inhibitors bind are well characterized. From this structural understanding the molecular basis for drug resistance in HIV-1 protease can be elucidated. Selected mutations in response to therapy and diversity between clades in HIV-1 protease have altered the shape of the active site, potentially altered the dynamics and even altered the sequence of the cleavage sites in the Gag polyprotein. All of these interdependent changes act in synergy to confer drug resistance while simultaneously maintaining the fitness of the virus. New strategies, such as incorporation of the substrate envelope constraint to design robust inhibitors that incorporate details of HIV-1 protease’s function and decrease the probability of drug resistance, are necessary to continue to effectively target this key protein in HIV-1 life cycle.


Journal of Virology | 2010

Evaluating the substrate-envelope hypothesis: structural analysis of novel HIV-1 protease inhibitors designed to be robust against drug resistance.

Madhavi N. L. Nalam; Akbar Ali; Michael D. Altman; G. S. Kiran Kumar Reddy; Sripriya Chellappan; Visvaldas Kairys; Ayşegül Özen; Hong Cao; Michael K. Gilson; Bruce Tidor; Tariq M. Rana; Celia A. Schiffer

ABSTRACT Drug resistance mutations in HIV-1 protease selectively alter inhibitor binding without significantly affecting substrate recognition and cleavage. This alteration in molecular recognition led us to develop the substrate-envelope hypothesis which predicts that HIV-1 protease inhibitors that fit within the overlapping consensus volume of the substrates are less likely to be susceptible to drug-resistant mutations, as a mutation impacting such inhibitors would simultaneously impact the processing of substrates. To evaluate this hypothesis, over 130 HIV-1 protease inhibitors were designed and synthesized using three different approaches with and without substrate-envelope constraints. A subset of 16 representative inhibitors with binding affinities to wild-type protease ranging from 58 nM to 0.8 pM was chosen for crystallographic analysis. The inhibitor-protease complexes revealed that tightly binding inhibitors (at the picomolar level of affinity) appear to “lock” into the protease active site by forming hydrogen bonds to particular active-site residues. Both this hydrogen bonding pattern and subtle variations in protein-ligand van der Waals interactions distinguish nanomolar from picomolar inhibitors. In general, inhibitors that fit within the substrate envelope, regardless of whether they are picomolar or nanomolar, have flatter profiles with respect to drug-resistant protease variants than inhibitors that protrude beyond the substrate envelope; this provides a strong rationale for incorporating substrate-envelope constraints into structure-based design strategies to develop new HIV-1 protease inhibitors.


Journal of Molecular Biology | 2011

Dynamics of preferential substrate recognition in HIV-1 protease: redefining the substrate envelope

Ayşegül Özen; Turkan Haliloglu; Celia A. Schiffer

Human immunodeficiency virus type 1 (HIV-1) protease (PR) permits viral maturation by processing the gag and gag-pro-pol polyproteins. HIV-1 PR inhibitors (PIs) are used in combination antiviral therapy but the emergence of drug resistance has limited their efficacy. The rapid evolution of HIV-1 necessitates consideration of drug resistance in novel drug design. Drug-resistant HIV-1 PR variants no longer inhibited efficiently, continue to hydrolyze the natural viral substrates. Though highly diverse in sequence, the HIV-1 PR substrates bind in a conserved three-dimensional shape we termed the substrate envelope. Earlier, we showed that resistance mutations arise where PIs protrude beyond the substrate envelope, because these regions are crucial for drug binding but not for substrate recognition. We extend this model by considering the role of protein dynamics in the interaction of HIV-1 PR with its substrates. We simulated the molecular dynamics of seven PR-substrate complexes to estimate the conformational flexibility of the bound substrates. Interdependence of substrate-protease interactions might compensate for variations in cleavage-site sequences and explain how a diverse set of sequences are recognized as substrates by the same enzyme. This diversity might be essential for regulating sequential processing of substrates. We define a dynamic substrate envelope as a more accurate representation of PR-substrate interactions. This dynamic substrate envelope, described by a probability distribution function, is a powerful tool for drug design efforts targeting ensembles of resistant HIV-1 PR variants with the aim of developing drugs that are less susceptible to resistance.


ACS Chemical Biology | 2013

Evaluating the Role of Macrocycles in the Susceptibility of Hepatitis C Virus NS3/4A Protease Inhibitors to Drug Resistance

Akbar Ali; Cihan Aydin; Reinhold Gildemeister; Keith P. Romano; Hong Cao; Ayşegül Özen; Djadé I. Soumana; Alicia Newton; Christos J. Petropoulos; Wei Huang; Celia A. Schiffer

The hepatitis C virus (HCV) infects an estimated 150 million people worldwide and is the major cause of viral hepatitis, cirrhosis, and liver cancer. The available antiviral therapies, which include PEGylated interferon, ribavirin, and one of the HCV NS3/4A protease inhibitors telaprevir or boceprevir, are ineffective for some patients and cause severe side effects. More potent NS3/4A protease inhibitors are in clinical development, but the long-term effectiveness of these drugs is challenged by the development of drug resistance. Here, we investigated the role of macrocycles in the susceptibility of NS3/4A protease inhibitors to drug resistance in asunaprevir, danoprevir, vaniprevir, and MK-5172, with similar core structures but varied P2 moieties and macrocyclizations. Linear and macrocyclic analogues of these drugs were designed, synthesized, and tested against wild-type and drug-resistant variants R155K, V36M/R155K, A156T, and D168A in enzymatic and antiviral assays. Macrocyclic inhibitors were generally more potent, but the location of the macrocycle was critical for retaining activity against drug-resistant variants: the P1-P3 macrocyclic inhibitors were less susceptible to drug resistance than the linear and P2-P4 macrocyclic analogues. In addition, the heterocyclic moiety at P2 largely determined the inhibitor resistance profile, susceptibility to drug resistance, and the extent of modulation by the helicase domain. Our findings suggest that to design robust inhibitors that retain potency to drug-resistant NS3/4A protease variants, inhibitors should combine P1-P3 macrocycles with flexible P2 moieties that optimally contact with the invariable catalytic triad of this enzyme.


Journal of Biological Chemistry | 2012

Context Surrounding Processing Sites Is Crucial in Determining Cleavage Rate of a Subset of Processing Sites in HIV-1 Gag and Gag-Pro-Pol Polyprotein Precursors by Viral Protease

Sook-Kyung Lee; Marc Potempa; Madhavi Kolli; Ayşegül Özen; Celia A. Schiffer; Ronald Swanstrom

Background: Processing of HIV-1 Gag/Gag-Pro-Pol polyprotein by viral protease is an essential step to produce infectious virus particle. Results: Processing of CA/SP1, SP1/NC, and SP2/p6 sites by HIV-1 protease are affected by context. Conclusion: Complex substrate interactions beyond the active site of the enzyme define HIV-1 processing rate. Significance: This study helps to understand role of context outside cleavage sites in HIV-1 processing. Processing of the human immunodeficiency virus type 1 (HIV-1) Gag and Gag-Pro-Pol polyproteins by the HIV-1 protease (PR) is essential for the production of infectious particles. However, the determinants governing the rates of processing of these substrates are not clearly understood. We studied the effect of substrate context on processing by utilizing a novel protease assay in which a substrate containing HIV-1 matrix (MA) and the N-terminal domain of capsid (CA) is labeled with a FlAsH (fluorescein arsenical hairpin) reagent. When the seven cleavage sites within the Gag and Gag-Pro-Pol polyproteins were placed at the MA/CA site, the rates of cleavage changed dramatically compared with that of the cognate sites in the natural context reported previously. The rate of processing was affected the most for three sites: CA/spacer peptide 1 (SP1) (≈10-fold increase), SP1/nucleocapsid (NC) (≈10–30-fold decrease), and SP2/p6 (≈30-fold decrease). One of two multidrug-resistant (MDR) PR variants altered the pattern of processing rates significantly. Cleavage sites within the Pro-Pol region were cleaved in a context-independent manner, suggesting for these sites that the sequence itself was the determinant of rate. In addition, a chimera consisting of SP1/NC P4–P1 and MA/CA P1′–P4′ residues (ATIM↓PIVQ) abolished processing by wild type and MDR proteases, and the reciprocal chimera consisting of MA/CA P4–P1 and SP1/NC P1′–4′ (SQNY↓IQKG) was cleaved only by one of the MDR proteases. These results suggest that complex substrate interactions both beyond the active site of the enzyme and across the scissile bond contribute to defining the rate of processing by the HIV-1 PR.


BMC Structural Biology | 2009

Machine learning integration for predicting the effect of single amino acid substitutions on protein stability

Ayşegül Özen; Ethem Alpaydin; Turkan Haliloglu

BackgroundComputational prediction of protein stability change due to single-site amino acid substitutions is of interest in protein design and analysis. We consider the following four ways to improve the performance of the currently available predictors: (1) We include additional sequence- and structure-based features, namely, the amino acid substitution likelihoods, the equilibrium fluctuations of the alpha- and beta-carbon atoms, and the packing density. (2) By implementing different machine learning integration approaches, we combine information from different features or representations. (3) We compare classification vs. regression methods to predict the sign vs. the output of stability change. (4) We allow a reject option for doubtful cases where the risk of misclassification is high.ResultsWe investigate three different approaches: early, intermediate and late integration, which respectively combine features, kernels over feature subsets, and decisions. We perform simulations on two data sets: (1) S1615 is used in previous studies, (2) S2783 is the updated version (as of July 2, 2009) extracted also from ProTherm. For S1615 data set, our highest accuracy using both sequence and structure information is 0.842 on cross-validation and 0.904 on testing using early integration. Newly added features, namely, local compositional packing and the mobility extent of the mutated residues, improve accuracy significantly with intermediate integration. For S2783 data set, we also train regression methods to estimate not only the sign but also the amount of stability change and apply risk-based classification to reject when the learner has low confidence and the loss of misclassification is high. The highest accuracy is 0.835 on cross-validation and 0.832 on testing using only sequence information. The percentage of false positives can be decreased to less than 0.005 by rejecting 10 per cent using late integration.ConclusionWe find that in both early and late integration, combining inputs or decisions is useful in increasing accuracy. Intermediate integration allows assessing the contributions of individual features by looking at the assigned weights. Overall accuracy of regression is not better than that of classification but it has less false positives, especially when combined with the reject option. The server for stability prediction for three integration approaches and the data sets are available at http://www.prc.boun.edu.tr/appserv/prc/mlsta.


Protein Science | 2016

Clusters of isoleucine, leucine, and valine side chains define cores of stability in high-energy states of globular proteins: Sequence determinants of structure and stability

Sagar V. Kathuria; Yvonne H. Chan; R. Paul Nobrega; Ayşegül Özen; C. Robert Matthews

Measurements of protection against exchange of main chain amide hydrogens (NH) with solvent hydrogens in globular proteins have provided remarkable insights into the structures of rare high‐energy states that populate their folding free‐energy surfaces. Lacking, however, has been a unifying theory that rationalizes these high‐energy states in terms of the structures and sequences of their resident proteins. The Branched Aliphatic Side Chain (BASiC) hypothesis has been developed to explain the observed patterns of protection in a pair of TIM barrel proteins. This hypothesis supposes that the side chains of isoleucine, leucine, and valine (ILV) residues often form large hydrophobic clusters that very effectively impede the penetration of water to their underlying hydrogen bond networks and, thereby, enhance the protection against solvent exchange. The linkage between the secondary and tertiary structures enables these ILV clusters to serve as cores of stability in high‐energy partially folded states. Statistically significant correlations between the locations of large ILV clusters in native conformations and strong protection against exchange for a variety of motifs reported in the literature support the generality of the BASiC hypothesis. The results also illustrate the necessity to elaborate this simple hypothesis to account for the roles of adjacent hydrocarbon moieties in defining stability cores of partially folded states along folding reaction coordinates.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Structural basis and distal effects of Gag substrate coevolution in drug resistance to HIV-1 protease

Ayşegül Özen; Kuan-Hung Lin; Nese Kurt Yilmaz; Celia A. Schiffer

Significance Drug resistance is a major health problem, especially in quickly evolving disease targets including HIV-1 protease. Treatment regimens including HIV-1 protease inhibitors select for viral variants carrying mutations both in the protease and the substrates to confer drug resistance. We report the molecular mechanisms of this protease–substrate coevolution based on complex crystal structures of protease–substrate variants, complemented with molecular dynamics simulations. Specific interactions with I50V/A71V protease are observed to be lost or formed in response to coevolution mutations in the p1-p6 substrate cleavage site. Our structural analysis provides insights into how coevolution in HIV-1 may contribute to thwarting the effectiveness of available drug regimens. Drug resistance mutations in response to HIV-1 protease inhibitors are selected not only in the drug target but elsewhere in the viral genome, especially at the protease cleavage sites in the precursor protein Gag. To understand the molecular basis of this protease–substrate coevolution, we solved the crystal structures of drug resistant I50V/A71V HIV-1 protease with p1-p6 substrates bearing coevolved mutations. Analyses of the protease–substrate interactions reveal that compensatory coevolved mutations in the substrate do not restore interactions lost due to protease mutations, but instead establish other interactions that are not restricted to the site of mutation. Mutation of a substrate residue has distal effects on other residues’ interactions as well, including through the induction of a conformational change in the protease. Additionally, molecular dynamics simulations suggest that restoration of active site dynamics is an additional constraint in the selection of coevolved mutations. Hence, protease–substrate coevolution permits mutational, structural, and dynamic changes via molecular mechanisms that involve distal effects contributing to drug resistance.


Journal of Virology | 2014

HIV-1 Protease-Substrate Coevolution in Nelfinavir Resistance

Madhavi Kolli; Ayşegül Özen; Nese Kurt-Yilmaz; Celia A. Schiffer

ABSTRACT Resistance to various human immunodeficiency virus type 1 (HIV-1) protease inhibitors (PIs) challenges the effectiveness of therapies in treating HIV-1-infected individuals and AIDS patients. The virus accumulates mutations within the protease (PR) that render the PIs less potent. Occasionally, Gag sequences also coevolve with mutations at PR cleavage sites contributing to drug resistance. In this study, we investigated the structural basis of coevolution of the p1-p6 cleavage site with the nelfinavir (NFV) resistance D30N/N88D protease mutations by determining crystal structures of wild-type and NFV-resistant HIV-1 protease in complex with p1-p6 substrate peptide variants with L449F and/or S451N. Alterations of residue 30s interaction with the substrate are compensated by the coevolving L449F and S451N cleavage site mutations. This interdependency in the PR–p1-p6 interactions enhances intermolecular contacts and reinforces the overall fit of the substrate within the substrate envelope, likely enabling coevolution to sustain substrate recognition and cleavage in the presence of PR resistance mutations. IMPORTANCE Resistance to human immunodeficiency virus type 1 (HIV-1) protease inhibitors challenges the effectiveness of therapies in treating HIV-1-infected individuals and AIDS patients. Mutations in HIV-1 protease selected under the pressure of protease inhibitors render the inhibitors less potent. Occasionally, Gag sequences also mutate and coevolve with protease, contributing to maintenance of viral fitness and to drug resistance. In this study, we investigated the structural basis of coevolution at the Gag p1-p6 cleavage site with the nelfinavir (NFV) resistance D30N/N88D protease mutations. Our structural analysis reveals the interdependency of protease-substrate interactions and how coevolution may restore substrate recognition and cleavage in the presence of protease drug resistance mutations.

Collaboration


Dive into the Ayşegül Özen's collaboration.

Top Co-Authors

Avatar

Celia A. Schiffer

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Akbar Ali

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar

Hong Cao

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar

Madhavi Kolli

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar

Madhavi N. L. Nalam

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bruce Tidor

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cihan Aydin

University of Massachusetts Medical School

View shared research outputs
Researchain Logo
Decentralizing Knowledge