Aysen Tezcaner
Middle East Technical University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Aysen Tezcaner.
Biomaterials | 2003
Aysen Tezcaner; K. Buğra; Vasif Hasirci
There is currently no effective treatment for the retinal disorders caused by retinal pigment epithelium (RPE) degeneration. Transplantation of allografts is the main strategy towards correction of this malady. Tissue engineering could offer hope and involve the use of biodegradable polymeric templates to replace diseased or lost RPE. In this study PHBV8 film was chosen as a temporary substrate for growing retinal pigment epithelium cells as an organized monolayer before their subretinal transplantation. The surface of the PHBV8 film was rendered hydrophilic by oxygen plasma treatment to increase the reattachment of D407 cells on the film surface. Power and duration was changed, from 50 W, 10 min to 100 W, 20 min during plasma treatment. The effect of these two parameters on surface hydrophilicity, morphology, topography, surface composition of PHBV8 thin films was studied using AFM, SEM, and phase contrast microscopy. The effect of changes in surface characteristics on cell reattachment, spreading and cell growth rate was investigated. It was found that as the treatment level was increased the surface hydrophilicity increased and roughness was decreased probably due to ablation. The PHBV8 film treated with 100 W 10 min was found to be the most suitable for 24 h reattachment of D407 cells. The cells were also grown to confluency as an organized monolayer suggesting PHBV8 film as a potential temporary substrate for subretinal transplantation to replace diseased or damaged retinal pigment epithelium.
Journal of Bioscience and Bioengineering | 2011
Omer Akturk; Aysen Tezcaner; Hasan Bilgili; M. Salih Deveci; M. Rusen Gecit; Dilek Keskin
Sericin, a silk protein, has high potential for use in biomedical applications. In this study, wound dressing membranes of Sericin (S) and Collagen (C) were prepared by glutaraldehyde cross-linking at S/C; 2:1, 1:1, 1:2, and 0:1 weight ratios. They were stable in water for 4 weeks. However, increasing the proportion of sericin had decreasing effect on the membrane stability. Water swelling property of membranes was enhanced with sericin. The highest water swelling was obtained in 1:1 group (9.06 g/g), but increasing collagen or sericin content in the membranes had a diminishing effect. Highest water vapor transmission rate was obtained with 1:2 group (1013.80 g/m(2)/day). Oxygen permeability results showed that 1:2 (7.67 mg/L) and 2:1 (7.85 mg/L) S/C groups were better than the other groups. While sericin decreased the tensile strength and elongation of membranes, it increased modulus. Sericin also increased brittleness of membranes, but their UTS range (24.93-44.92 MPa) was still suitable for a wound dressing. Membranes were not penetrable to microorganisms. Cytotoxicity studies showed that fibroblasts and keratinocytes attached and gained their characteristic morphologies. They also proliferated on membranes significantly. After 1 week of subcutaneous implantation, a fibrous capsule formed around all membranes with an acute inflammation. Sericin containing membranes showed signs of degradation (at 2nd week), while collagen only membranes remained largely intact. Eventually, sericin containing membranes degraded in 3 weeks with moderate inflammatory response. Overall results suggest that sericin/collagen membranes would be favorable as wound dressing material when sericin ratio is less than or equal to the collagen component.
Bioscience Reports | 2010
Asli Deniz; Asli Sade; Feride Severcan; Dilek Keskin; Aysen Tezcaner; Sreeparna Banerjee
CLX (celecoxib) is a highly hydrophobic non-steroidal anti-inflammatory drug with high plasma protein binding. We describe here the encapsulation of CLX in MLVs (multilamellar vesicles) composed of DSPC (1,2-distearoyl-sn-glycero-3-phosphocholine) and variable amounts of cholesterol. The effects of cholesterol content on liposome size, percentage drug loading and in vitro drug release profiles were investigated. Differential scanning calorimetry and FTIR (Fourier-transform infrared) spectroscopy were used to determine molecular interactions between CLX, cholesterol and DSPC. The phase transition temperature (Tm) of vesicles was reduced in a synergistic manner in the presence of both CLX and cholesterol. Encapsulation efficiency, loading and release of CLX decreased with increasing cholesterol content. FTIR results indicated that this decrease was due to a competition between CLX and cholesterol for the co-operativity region of the phospholipids. In the presence of cholesterol, CLX was pushed further into the hydrophobic core of the bilayer. However, MLVs prepared with DSPC only (without cholesterol) exhibited the lowest ability for drug retention after 72 h. Our results indicated that CLX, without the requirement of modifications to enhance solubilization, can be encapsulated and released from liposomal formulations. This method of drug delivery may be used to circumvent the low bioavailability and systemic side effects of oral CLX formulations.
Carbohydrate Polymers | 2015
Deniz Atila; Dilek Keskin; Aysen Tezcaner
Skin defects that are not able to regenerate by themselves are among the major problems faced. Tissue engineering approach holds promise for treating such defects. Development of tissue-mimicking-scaffolds that can promote healing process receives an increasing interest in recent years. In this study, 3-dimensional electrospun cellulose acetate (CA) pullulan (PULL) scaffolds were developed for the first time. PULL was intentionally used to obtain 3D structures with adjustable height. It was removed from the electrospun mesh to increase the porosity and biostability. Different ratios of the polymers were electrospun and analyzed with respect to degradation, porosity, and mechanical properties. It has been observed that fiber diameter, thickness and porosity of scaffolds increased with increased PULL content, on the other hand this resulted with higher degradation of scaffolds. Mechanical strength of scaffolds was improved after PULL removal suggesting their suitability as cell carriers. Cell culture studies were performed with the selected scaffold group (CA/PULL: 50/50) using mouse fibroblastic cell line (L929). In vitro cell culture tests showed that cells adhered, proliferated and populated CA/PULL (50/50) scaffolds showing that they are cytocompatible. Results suggest that uncrosslinked CA/PULL (50/50) electrospun scaffolds hold potential for skin tissue engineering applications.
Materials Science and Engineering: C | 2016
Deniz Atila; Dilek Keskin; Aysen Tezcaner
Natural polymer based fibrous scaffolds have been explored for bone tissue engineering applications; however, their inadequate 3-dimensionality and poor mechanical properties are among the concerns for their use as bone substitutes. In this study, pullulan (P) and cellulose acetate (CA), two polysaccharides, were electrospun at various P/CA ratios (P80/CA20, P50/CA50, and P20/CA80%) to develop 3D fibrous network. The scaffolds were then crosslinked with trisodium trimetaphosphate (STMP) to improve the mechanical properties and to delay fast weight loss. The lowest weight loss was observed for the groups that were crosslinked with P/STMP 2/1 for 10min. Fiber morphologies of P50/CA50 were more uniform without phase separation and this group was crosslinked most efficiently among groups. It was found that mechanical properties of P20/CA80 and P50/CA50 were higher than that of P80/CA20. After crosslinking strain values of P50/CA50 scaffolds were improved and these scaffolds became more stable. Unlike P80/CA20, uncrosslinked P50/CA50 and P20/CA80 were not lost in PBS. Among all groups, crosslinked P50/CA50 scaffolds had more uniform pores; therefore this group was used for bioactivity and cell culture studies. Apatite-like structures were observed on fibers after SBF incubation. Human Osteogenic Sarcoma Cell Line (Saos-2) seeded onto crosslinked P50/CA50 scaffolds adhered and proliferated. The functionality of cells was tested by measuring ALP activity of the cells and the results indicated their osteoblastic differentiation. In vitro tests showed that scaffolds were cytocompatible. To sum up, crosslinked P50/CA50 scaffolds were proposed as candidate cell carriers for bone tissue engineering applications.
International Journal of Pharmaceutics | 2015
Yanuar Dwi Putra Limasale; Aysen Tezcaner; Can Özen; Dilek Keskin; Sreeparna Banerjee
Cyclooxygenase-2 (COX-2) is highly expressed in many different cancers. Therefore, the inhibition of the COX-2 pathway by a selective COX-2 inhibitor, celecoxib (CLX), may be an alternative strategy for cancer prevention and therapy. Liposomal drug delivery systems can be used to increase the therapeutic efficacy of CLX while minimizing its side effects. Previous studies have reported the encapsulation of CLX within the non-targeted long circulating liposomes and functional effect of these formulations against colorectal cancer cell lines. However, the selectivity and internalization of CLX-loaded liposomes can further be improved by grafting targeting ligands on their surface. Cetuximab (anti-epidermal growth factor receptor - EGFR - monoclonal antibody) is a promising targeting ligand since EGFR is highly expressed in a wide range of solid tumors. The aim of this study was to develop EGFR-targeted immunoliposomes for enhancing the delivery of CLX to cancer cells and to evaluate the functional effects of these liposomes in cancer cell lines. EGFR-targeted ILs, having an average size of 120nm, could encapsulate 40% of the CLX, while providing a sustained drug release profile. Cell association studies have also shown that the immunoliposome uptake was higher in EGFR-overexpressing cells compared to the non-targeted liposomes. In addition, the CLX-loaded-anti-EGFR immunoliposomes were significantly more toxic compared to the non-targeted ones in cancer cells with EGFR-overexpression but not in the cells with low EGFR expression, regardless of their COX-2 expression status. Thus, selective targeting of CLX with anti-EGFR immunoliposomes appears to be a promising strategy for therapy of tumors that overexpress EGFR.
Colloids and Surfaces B: Biointerfaces | 2014
Özge Erdemli; Ali Usanmaz; Dilek Keskin; Aysen Tezcaner
Polyester-polyether type block copolymers have attracted attention in the area of drug delivery systems with their capability in providing a broad range of amphiphilic characteristics. The aim of the present work was to prepare and characterize immunoglobulin G (IgG) loaded methoxy poly(ethylene glycol)-poly(ɛ-caprolactone)-methoxy poly(ethylene glycol) (MPEG-PCL-MPEG) microspheres as potential carrier for therapeutic monoclonal antibodies used in clinics. MPEG-PCL-MPEG triblock copolymer was synthesized by ring-opening polymerization of ɛ-caprolactone initiated by MPEG and then characterized. Microspheres were prepared by double emulsion-solvent evaporation method and their properties were compared with those of PCL microspheres. Microspheres had spherical shape with a mean particle size around 6 μm. MPEG-PCL-MPEG microspheres had higher encapsulation efficiency than PCL microspheres. After 90 days of release, 30±2% and 57±3% of the bioactivity of IgG released from non-irradiated PCL and MPEG-PCL-MPEG microspheres were protected, respectively. Presence of MPEG in microspheres provided more controlled IgG release rate and protected IgG from denaturation during γ-irradiation (20±3% and 49±2% for PCL and MPEG-PCL-MPEG microspheres, respectively). In vitro cytotoxicity tests revealed that both MPEG-PCL-MPEG and PCL microspheres had no toxic effect on cells. This study showed that MPEG-PCL-MPEG microspheres are promising delivery systems for therapeutic monoclonal antibodies.
European Journal of Pharmacology | 2016
Maryam Parsian; Gozde Unsoy; Pelin Mutlu; Serap Yalcin; Aysen Tezcaner; Ufuk Gündüz
Targeted delivery of anti-cancer drugs increase the efficacy, while decreasing adverse effects. Among various delivery systems, chitosan coated iron oxide nanoparticles (CsMNPs) gained attention with their biocompatibility, biodegradability, low toxicity and targetability under magnetic field. This study aimed to increase the cellular uptake and efficacy of Gemcitabine. CsMNPs were synthesized by in situ co-precipitation and Gemcitabine was loaded onto the nanoparticles. Nanoparticle characterization was performed by TEM, FTIR, XPS, and zeta potential. Gemcitabine release and stability was analyzed. The cellular uptake was shown. Cytotoxicity of free-Gemcitabine and Gem-CsMNPs were examined on SKBR and MCF-7 breast cancer cells by XTT assay. Gemcitabine loading was optimized as 30µM by spectrophotometric analyses. Drug release was highest (65%) at pH 4.2, while it was 8% at pH 7.2. This is a desired release characteristic since pH of tumor-tissue and endosomes are acidic, while the blood-stream and healthy-tissues are neutral. Peaks reflecting the presence of Gemcitabine were observed in FTIR and XPS. At neutral pH, zeta potential increased after Gemcitabine loading. TEM images displayed, Gem-CsMNPs were 4nm with uniform size-distribution and have spherical shape. The cellular uptake and targetability of CsMNPs was studied on MCF-7 breast cancer cell lines. IC50 value of Gem-CsMNPs was 1.4 fold and 2.6 fold lower than free-Gem on SKBR-3 and MCF-7 cell lines respectively, indicating the increased efficacy of Gemcitabine when loaded onto nanoparticles. Targetability by magnetic field, stability, size distribution, cellular uptake and toxicity characteristics of CsMNPs in this study provides a useful targeted delivery system for Gemcitabine in cancer therapy.
Materials Science and Engineering: C | 2016
Hazal Aydogdu; Dilek Keskin; Erkan Türker Baran; Aysen Tezcaner
Microcarrier systems offer a convenient way to repair bone defects as injectable cell carriers that can be applied with small incisions owing to their small size and spherical shape. In this study, pullulan (PULL) microspheres were fabricated and characterized as cell carriers for bone tissue engineering applications. PULL was cross-linked by trisodium trimetaphosphate (STMP) to enhance the stability of the microspheres. Improved cytocompatibility was achieved by silk fibroin (SF) coating and biomimetic mineralization on the surface by incubating in simulated body fluid (SBF). X-ray diffraction (XRD), scanning electron microscopy (SEM) and fluorescent microscopy analysis confirmed biomimetic mineralization and SF coating on microspheres. The degradation analysis revealed that PULL microspheres had a slow degradation rate with 8% degradation in two weeks period indicating that the microspheres would support the formation of new bone tissue. Furthermore, the mechanical tests showed that the microspheres had a high mechanical stability that was significantly enhanced with the biomimetic mineralization. In vitro cell culture studies with SaOs-2 cells showed that cell viability was higher on SF and SBF coated microspheres on 7th day compared to PULL ones under dynamic conditions. Alkaline phosphatase activity was higher for SF coated microspheres in comparison to uncoated microspheres when dynamic culture condition was applied. The results suggest that both organic and inorganic surface modifications can be applied on PULL microspheres to prepare a biocompatible microcarrier system with suitable properties for bone tissue engineering.
Journal of Biomedical Materials Research Part B | 2011
S. M. Toker; Aysen Tezcaner; Zafer Evis
The current study focused on doping of hydroxyapatite (HA) with constant yttrium (Y(3+) ) and varying fluoride (F(-) ) compositions to investigate its microstructure, microhardness, and biocompatibility. HA was synthesized by precipitation method and sintered at 1100°C for 1 h. Y(3+) and F(-) ion dopings resulted in changes in densities. In x-ray diffraction analysis, no secondary phase formation was observed. Lattice parameters decreased upon ion substitutions. Scanning electron microscopy (SEM) results showed that ion addition resulted in smaller grains. In Fourier transform infrared spectroscopy analysis, F(-) ion substitution was confirmed. HA doped with 2.5% Y(3+) and 1% F(-) exhibited the highest microhardness. Y(3+) and F(-) ions improved Saos-2 cell proliferation on discs in Methylthiazolyldiphenyl-tetrazolium (MTT) assay. In SEM analysis, cells attached and proliferated on all disc surfaces. Alkaline phosphatase (ALP) assay showed that cell differentiation on the discs was improved by doping HA with an optimum F(-) amount. Dissolution tests revealed that structural stability of HA was improved with F(-) ion incorporation. The dissolution behavior of fluoridated samples exhibited a parallel pattern with the cell proliferation and differentiation behavior on these samples. Overall, this work shows that fluoride and yttrium cosubstitution into HA HA2.5Y1F was the most promising material for biomedical applications.