Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Aysha H. Osmani is active.

Publication


Featured researches published by Aysha H. Osmani.


Genetics | 2006

A Versatile and Efficient Gene-Targeting System for Aspergillus nidulans

Tania Nayak; Edyta Szewczyk; C. Elizabeth Oakley; Aysha H. Osmani; Leena Ukil; Sandra L. Murray; Michael J. Hynes; Stephen A. Osmani; Berl R. Oakley

Aspergillus nidulans is an important experimental organism, and it is a model organism for the genus Aspergillus that includes serious pathogens as well as commercially important organisms. Gene targeting by homologous recombination during transformation is possible in A. nidulans, but the frequency of correct gene targeting is variable and often low. We have identified the A. nidulans homolog (nkuA) of the human KU70 gene that is essential for nonhomologous end joining of DNA in double-strand break repair. Deletion of nkuA (nkuAΔ) greatly reduces the frequency of nonhomologous integration of transforming DNA fragments, leading to dramatically improved gene targeting. We have also developed heterologous markers that are selectable in A. nidulans but do not direct integration at any site in the A. nidulans genome. In combination, nkuAΔ and the heterologous selectable markers make up a very efficient gene-targeting system. In experiments involving scores of genes, 90% or more of the transformants carried a single insertion of the transforming DNA at the correct site. The system works with linear and circular transforming molecules and it works for tagging genes with fluorescent moieties, replacing genes, and replacing promoters. This system is efficient enough to make genomewide gene-targeting projects feasible.


Nature Protocols | 2006

Identification and analysis of essential Aspergillus nidulans genes using the heterokaryon rescue technique.

Aysha H. Osmani; Berl R. Oakley; Stephen A. Osmani

In the heterokaryon rescue technique, gene deletions are carried out using the pyrG nutritional marker to replace the coding region of target genes via homologous recombination in Aspergillus nidulans. If an essential gene is deleted, the null allele is maintained in spontaneously generated heterokaryons that consist of two genetically distinct types of nuclei. One nuclear type has the essential gene deleted but has a functional pyrG allele (pyrG+). The other has the wild-type allele of the essential gene but lacks a functional pyrG allele (pyrG−). Thus, a simple growth test applied to the uninucleate asexual spores formed from primary transformants can identify deletions of genes that are non-essential from those that are essential and can only be propagated by heterokaryon rescue. The growth tests also enable the phenotype of the null allele to be defined. Diagnostic PCR can be used to confirm deletions at the molecular level. This technique is suitable for large-scale gene-deletion programs and can be completed within 3 weeks.Note: In the version of this article initially published, the black ball in Figure 2c was incorrectly described as representing a pyrG–, geneX+ nuclei. This ball represents pyrG+, geneX–. The error has been corrected in all versions of the article.


Molecular Biology of the Cell | 2008

The Three Fungal Transmembrane Nuclear Pore Complex Proteins of Aspergillus nidulans Are Dispensable in the Presence of an Intact An-Nup84-120 Complex

Hui-Lin Liu; Colin P. De Souza; Aysha H. Osmani; Stephen A. Osmani

In Aspergillus nidulans nuclear pore complexes (NPCs) undergo partial mitotic disassembly such that 12 NPC proteins (Nups) form a core structure anchored across the nuclear envelope (NE). To investigate how the NPC core is maintained, we affinity purified the major core An-Nup84-120 complex and identified two new fungal Nups, An-Nup37 and An-ELYS, previously thought to be vertebrate specific. During mitosis the An-Nup84-120 complex locates to the NE and spindle pole bodies but, unlike vertebrate cells, does not concentrate at kinetochores. We find that mutants lacking individual An-Nup84-120 components are sensitive to the membrane destabilizer benzyl alcohol (BA) and high temperature. Although such mutants display no defects in mitotic spindle formation, they undergo mitotic specific disassembly of the NPC core and transient aggregation of the mitotic NE, suggesting the An-Nup84-120 complex might function with membrane. Supporting this, we show cells devoid of all known fungal transmembrane Nups (An-Ndc1, An-Pom152, and An-Pom34) are viable but that An-ndc1 deletion combined with deletion of individual An-Nup84-120 components is either lethal or causes sensitivity to treatments expected to destabilize membrane. Therefore, the An-Nup84-120 complex performs roles, perhaps at the NPC membrane as proposed previously, that become essential without the An-Ndc1 transmembrane Nup.


PLOS ONE | 2013

Functional Analysis of the Aspergillus nidulans Kinome

Colin P. De Souza; Shahr B. Hashmi; Aysha H. Osmani; Peter C. Andrews; Carol S. Ringelberg; Jay C. Dunlap; Stephen A. Osmani

The filamentous fungi are an ecologically important group of organisms which also have important industrial applications but devastating effects as pathogens and agents of food spoilage. Protein kinases have been implicated in the regulation of virtually all biological processes but how they regulate filamentous fungal specific processes is not understood. The filamentous fungus Aspergillus nidulans has long been utilized as a powerful molecular genetic system and recent technical advances have made systematic approaches to study large gene sets possible. To enhance A. nidulans functional genomics we have created gene deletion constructs for 9851 genes representing 93.3% of the encoding genome. To illustrate the utility of these constructs, and advance the understanding of fungal kinases, we have systematically generated deletion strains for 128 A. nidulans kinases including expanded groups of 15 histidine kinases, 7 SRPK (serine-arginine protein kinases) kinases and an interesting group of 11 filamentous fungal specific kinases. We defined the terminal phenotype of 23 of the 25 essential kinases by heterokaryon rescue and identified phenotypes for 43 of the 103 non-essential kinases. Uncovered phenotypes ranged from almost no growth for a small number of essential kinases implicated in processes such as ribosomal biosynthesis, to conditional defects in response to cellular stresses. The data provide experimental evidence that previously uncharacterized kinases function in the septation initiation network, the cell wall integrity and the morphogenesis Orb6 kinase signaling pathways, as well as in pathways regulating vesicular trafficking, sexual development and secondary metabolism. Finally, we identify ChkC as a third effector kinase functioning in the cellular response to genotoxic stress. The identification of many previously unknown functions for kinases through the functional analysis of the A. nidulans kinome illustrates the utility of the A. nidulans gene deletion constructs.


Eukaryotic Cell | 2010

Single-step affinity purification for fungal proteomics.

Hui-Lin Liu; Aysha H. Osmani; Leena Ukil; Sunghun Son; Sarine Markossian; Kuo-Fang Shen; Meera Govindaraghavan; Archana Varadaraj; Shahr B. Hashmi; Colin P. De Souza; Stephen A. Osmani

ABSTRACT A single-step protein affinity purification protocol using Aspergillus nidulans is described. Detailed protocols for cell breakage, affinity purification, and depending on the application, methods for protein release from affinity beads are provided. Examples defining the utility of the approaches, which should be widely applicable, are included.


PLOS ONE | 2014

Application of a New Dual Localization-Affinity Purification Tag Reveals Novel Aspects of Protein Kinase Biology in Aspergillus nidulans

Colin P. De Souza; Shahr B. Hashmi; Aysha H. Osmani; Stephen A. Osmani

Filamentous fungi occupy critical environmental niches and have numerous beneficial industrial applications but devastating effects as pathogens and agents of food spoilage. As regulators of essentially all biological processes protein kinases have been intensively studied but how they regulate the often unique biology of filamentous fungi is not completely understood. Significant understanding of filamentous fungal biology has come from the study of the model organism Aspergillus nidulans using a combination of molecular genetics, biochemistry, cell biology and genomic approaches. Here we describe dual localization-affinity purification (DLAP) tags enabling endogenous N or C-terminal protein tagging for localization and biochemical studies in A. nidulans. To establish DLAP tag utility we endogenously tagged 17 protein kinases for analysis by live cell imaging and affinity purification. Proteomic analysis of purifications by mass spectrometry confirmed association of the CotA and NimXCdk1 kinases with known binding partners and verified a predicted interaction of the SldABub1/R1 spindle assembly checkpoint kinase with SldBBub3. We demonstrate that the single TOR kinase of A. nidulans locates to vacuoles and vesicles, suggesting that the function of endomembranes as major TOR cellular hubs is conserved in filamentous fungi. Comparative analysis revealed 7 kinases with mitotic specific locations including An-Cdc7 which unexpectedly located to mitotic spindle pole bodies (SPBs), the first such localization described for this family of DNA replication kinases. We show that the SepH septation kinase locates to SPBs specifically in the basal region of apical cells in a biphasic manner during mitosis and again during septation. This results in gradients of SepH between G1 SPBs which shift along hyphae as each septum forms. We propose that SepH regulates the septation initiation network (SIN) specifically at SPBs in the basal region of G1 cells and that localized gradients of SIN activity promote asymmetric septation.


Genetics | 2014

The Set1/COMPASS histone H3 methyltransferase helps regulate mitosis with the CDK1 and NIMA mitotic kinases in Aspergillus nidulans.

Meera Govindaraghavan; Sarah Lea Anglin; Aysha H. Osmani; Stephen A. Osmani

Mitosis is promoted and regulated by reversible protein phosphorylation catalyzed by the essential NIMA and CDK1 kinases in the model filamentous fungus Aspergillus nidulans. Protein methylation mediated by the Set1/COMPASS methyltransferase complex has also been shown to regulate mitosis in budding yeast with the Aurora mitotic kinase. We uncover a genetic interaction between An-swd1, which encodes a subunit of the Set1 protein methyltransferase complex, with NIMA as partial inactivation of nimA is poorly tolerated in the absence of swd1. This genetic interaction is additionally seen without the Set1 methyltransferase catalytic subunit. Importantly partial inactivation of NIMT, a mitotic activator of the CDK1 kinase, also causes lethality in the absence of Set1 function, revealing a functional relationship between the Set1 complex and two pivotal mitotic kinases. The main target for Set1-mediated methylation is histone H3K4. Mutational analysis of histone H3 revealed that modifying the H3K4 target residue of Set1 methyltransferase activity phenocopied the lethality seen when either NIMA or CDK1 are partially functional. We probed the mechanistic basis of these genetic interactions and find that the Set1 complex performs functions with CDK1 for initiating mitosis and with NIMA during progression through mitosis. The studies uncover a joint requirement for the Set1 methyltransferase complex with the CDK1 and NIMA kinases for successful mitosis. The findings extend the roles of the Set1 complex to include the initiation of mitosis with CDK1 and mitotic progression with NIMA in addition to its previously identified interactions with Aurora and type 1 phosphatase in budding yeast.


Molecular Microbiology | 2017

Microtubule-organizing centers of Aspergillus nidulans are anchored at septa by a disordered protein: MTOCs in Aspergillus

Ying Zhang; Xiaolei Gao; Raphael Manck; Marjorie Schmid; Aysha H. Osmani; Stephen A. Osmani; Norio Takeshita; Reinhard Fischer

Microtubule‐organizing centers (MTOCs) are large, multi‐subunit protein complexes. Schizosaccharomyces pombe harbors MTOCs at spindle pole bodies, transient MTOCs in the division plane (eMTOCs) and nuclear‐envelope associated MTOCs in interphase cells (iMTOCs). In the filamentous fungus Aspergillus nidulans SPBs and septum‐associated MTOCs were described. Although comparable to S. pombe eMTOCs, A. nidulans sMTOCS are permanent septum‐associated structures. The composition of sMTOCs is poorly understood and how they are targeted to septa was unknown. Here, we show that in A. nidulans several SPB outer plaque proteins also locate to sMTOCs while other SPB proteins do not, including SfiA, a protein required for SPB duplication in Saccharomyces cerevisiae and S. pombe and PcpA, the anchor for γ‐TuSCs at the SPB inner plaque. The A. nidulans disordered protein Spa18Mto2 and the centrosomin‐domain containing protein ApsBMto1 were required for recruiting the γ‐TuRC component GcpC to sMTOCs and for seeding MT formation from septa. Testing different septum‐associated proteins for a role in sMTOC function, Spa10 was identified. It forms a septal pore disc structure, recruits Spa18 and ApsB to septa and is required for sMTOC activity. This is the first evidence for a septum‐specific protein, Spa10, as anchor for a specific class of MTOCs.


Molecular Biology of the Cell | 2015

Nup2 requires a highly divergent partner, NupA, to fulfill functions at nuclear pore complexes and the mitotic chromatin region.

Sarine Markossian; Subbulakshmi Suresh; Aysha H. Osmani; Stephen A. Osmani

Among nuclear pore proteins, Nup2 is unique because it transfers to the mitotic chromatin region to fulfill unknown functions. Analysis of Nup2 and a novel targeting partner, NupA, shows that they are required for normal anaphase and nucleokinesis. Their functions also involve an import pathway for Mad1 but apparently not general nuclear protein import.


PLOS ONE | 2015

The Inner Nuclear Membrane Protein Src1 Is Required for Stable Post-Mitotic Progression into G1 in Aspergillus nidulans

Hui-Lin Liu; Aysha H. Osmani; Stephen A. Osmani

How membranes and associated proteins of the nuclear envelope (NE) are assembled specifically and inclusively around segregated genomes during exit from mitosis is incompletely understood. Inner nuclear membrane (INM) proteins play key roles by providing links between DNA and the NE. In this study we have investigated the highly conserved INM protein Src1 in Aspergillus nidulans and have uncovered a novel cell cycle response during post mitotic formation of G1 nuclei. Live cell imaging indicates Src1 could have roles during mitotic exit as it preferentially locates to the NE abscission points during nucleokinesis and to the NE surrounding forming daughter G1 nuclei. Deletion analysis further supported this idea revealing that although Src1 is not required for interphase progression or mitosis it is required for stable post-mitotic G1 nuclear formation. This conclusion is based upon the observation that in the absence of Src1 newly formed G1 nuclei are structurally unstable and immediately undergo architectural modifications typical of mitosis. These changes include NPC modifications that stop nuclear transport as well as disassembly of nucleoli. More intriguingly, the newly generated G1 nuclei then cycle between mitotic- and interphase-like states. The findings indicate that defects in post-mitotic G1 nuclear formation caused by lack of Src1 promote repeated failed attempts to generate stable G1 nuclei. To explain this unexpected phenotype we suggest a type of regulation that promotes repetition of defective cell cycle transitions rather than preventing progression past the defective cell cycle transition. We suggest the term “reboot regulation” to define this mode of cell cycle regulation. The findings are discussed in relationship to recent studies showing the Cdk1 master oscillator can entrain subservient oscillators that when uncoupled cause cell cycle transitions to be repeated.

Collaboration


Dive into the Aysha H. Osmani's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge