Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ayumi Yamagami is active.

Publication


Featured researches published by Ayumi Yamagami.


Planta | 2013

A novel mitochondrial DnaJ/Hsp40 family protein BIL2 promotes plant growth and resistance against environmental stress in brassinosteroid signaling

Davaapurev Bekh-Ochir; Setsuko Shimada; Ayumi Yamagami; Satomi Kanda; Kenji Ogawa; Miki Nakazawa; Minami Matsui; Masaaki Sakuta; Tadao Asami; Takeshi Nakano

Plant steroid hormones, brassinosteroids, are essential for growth, development and responses to environmental stresses in plants. Although BR signaling proteins are localized in many organelles, i.e., the plasma membrane, nuclei, endoplasmic reticulum and vacuole, the details regarding the BR signaling pathway from perception at the cellular membrane receptor BRASSINOSTEROID INSENSITIVE 1 (BRI1) to nuclear events include several steps. Brz (Brz220) is a specific inhibitor of BR biosynthesis. In this study, we used Brz-mediated chemical genetics to identify Brz-insensitive-long hypocotyls 2-1D (bil2-1D). The BIL2 gene encodes a mitochondrial-localized DnaJ/Heat shock protein 40 (DnaJ/Hsp40) family, which is involved in protein folding. BIL2-overexpression plants (BIL2-OX) showed cell elongation under Brz treatment, increasing the growth of plant inflorescence and roots, the regulation of BR-responsive gene expression and suppression against the dwarfed BRI1-deficient mutant. BIL2-OX also showed resistance against the mitochondrial ATPase inhibitor oligomycin and higher levels of exogenous ATP compared with wild-type plants. BIL2 participates in resistance against salinity stress and strong light stress. Our results indicate that BIL2 induces cell elongation during BR signaling through the promotion of ATP synthesis in mitochondria.


Plant Journal | 2010

The chloroplast protein BPG2 functions in brassinosteroid-mediated post-transcriptional accumulation of chloroplast rRNA.

Tomoyuki Komatsu; Hiroshi Kawaide; Chieko Saito; Ayumi Yamagami; Setsuko Shimada; Miki Nakazawa; Minami Matsui; Akihiko Nakano; Masafumi Tsujimoto; Masahiro Natsume; Hiroshi Abe; Tadao Asami; Takeshi Nakano

Brassinazole (Brz) is a specific inhibitor of the biosynthesis of brassinosteroids (BRs), which regulate plant organ and chloroplast development. We identified a recessive pale green Arabidopsis mutant, bpg2-1 (Brz-insensitive-pale green 2-1) that showed reduced sensitivity to chlorophyll accumulation promoted by Brz in the light. BPG2 encodes a chloroplast-localized protein with a zinc finger motif and four GTP-binding domains that are necessary for normal chloroplast biogenesis. BPG2-homologous genes are evolutionally conserved in plants, green algae and bacteria. Expression of BPG2 is induced by light and Brz. Chloroplasts of the bpg2-1 mutant have a decreased number of stacked grana thylakoids. In bpg2-1 and bpg2-2 mutants, there was no reduction in expression of rbcL and psbA, but there was abnormal accumulation of precursors of chloroplast 16S and 23S rRNA. Chloroplast protein accumulation induced by Brz was suppressed by the bpg2 mutation. These results indicate that BPG2 plays an important role in post-transcriptional and translational regulation in the chloroplast, and is a component of BR signaling.


Bioscience, Biotechnology, and Biochemistry | 2009

Chemical genetics reveal the novel transmembrane protein BIL4, which mediates plant cell elongation in brassinosteroid signaling.

Ayumi Yamagami; Miki Nakazawa; Minami Matsui; Masafumi Tujimoto; Masaaki Sakuta; Tadao Asami; Takeshi Nakano

Steroid hormones are conserved between animals and plants as signaling molecules to control growth and development. Plant steroid hormones, brassinosteroids (BRs), appear to play an important role in plant cell elongation. BRs bind to leucine-rich repeat kinase BRASSINOSTEROID-INSENSITIVE 1 (BRI1) localized to the plasma membrane, activate transcription factors in collaboration with cytosolic kinases and phosphatases, and regulate BR-responsive gene expression, but the details regarding the BR signaling pathway from perception to nuclear events remain unknown. In this study we used chemical genetics to identify an evolutionarily conserved transmembrane protein, Brz-insensitive-long hypocotyls 4 (BIL4), and demonstrated its role as a critical component of plant cell elongation occurring upon BR signaling. A dominant mutation, bil4-1D, showed cell elongation in the presence of the BR-specific inhibitor Brz. Brz suppresses expression of the BIL4 gene in wild-type plants, and overexpression of BIL4 in bil4-1D suppresses the BR deficiency caused by Brz. Our results indicate that BIL4 mediates cell elongation on BR signaling.


Plant and Cell Physiology | 2010

Comparative analysis of the triplicate proathocyanidin regulators in Lotus japonicus

Kazuko Yoshida; Nao Kume; Yumi Nakaya; Ayumi Yamagami; Takeshi Nakano; Masaaki Sakuta

Proanthocyanidins (PAs), which are flavonoid compounds widely distributed in the plant kingdom, protect against environmental stress. The accumulation of PAs is regulated by a ternary transcriptional complex comprising the R2R3-MYB transcription factor, a basic helix-loop-helix (bHLH) transcription factor and a WD40 repeat (WDR) protein. Recently, multigene families of the R2R3-MYB-type PA regulators from Lotus japonicus, LjTT2a, b and c, were isolated and characterized. Although their roles as transcription factors that up-regulate PA biosynthetic genes have been elucidated, the significance of their redundancies and functions in planta is unknown. In this study, we characterized LjTT2a, b and c to elucidate their functions in planta and determine differences in transcriptional activation properties. Transgenic studies demonstrated that LjTT2a could induce ectopic PA accumulation in Arabidopsis. Further analysis of the LjTT2 multigene family using a transient expression system revealed differences in transcriptional activities in cooperation with WDR and bHLH proteins isolated from L. japonicus. In-depth characterization of chimeric constructs of three LjTT2s, as well as site-directed mutagenesis in R2-MYB domains, identified the amino acid residues that affect the level of transcriptional activation of LjTT2.


The Plant Cell | 2015

Formation and Dissociation of the BSS1 Protein Complex Regulates Plant Development via Brassinosteroid Signaling

Setsuko Shimada; Tomoyuki Komatsu; Ayumi Yamagami; Miki Nakazawa; Minami Matsui; Hiroshi Kawaide; Masahiro Natsume; Tadao Asami; Takeshi Nakano

BSS1 forms a complex with a master regulator of brassinosteroid signaling, thereby restricting the regulator to the cytosol and negatively regulating brassinosteroid signaling. Brassinosteroids (BRs) play important roles in plant development and the response to environmental cues. BIL1/BZR1 is a master transcription factor in BR signaling, but the mechanisms that lead to the finely tuned targeting of BIL1/BZR1 by BRs are unknown. Here, we identified BRZ-SENSITIVE-SHORT HYPOCOTYL1 (BSS1) as a negative regulator of BR signaling in a chemical-biological analysis involving brassinazole (Brz), a specific BR biosynthesis inhibitor. The bss1-1D mutant, which overexpresses BSS1, exhibited a Brz-hypersensitive phenotype in hypocotyl elongation. BSS1 encodes a BTB-POZ domain protein with ankyrin repeats, known as BLADE ON PETIOLE1 (BOP1), which is an important regulator of leaf morphogenesis. The bss1-1D mutant exhibited an increased accumulation of phosphorylated BIL1/BZR1 and a negative regulation of BR-responsive genes. The number of fluorescent BSS1/BOP1-GFP puncta increased in response to Brz treatment, and the puncta were diffused by BR treatment in the root and hypocotyl. We show that BSS1/BOP1 directly interacts with BIL1/BZR1 or BES1. The large protein complex formed between BSS1/BOP1 and BIL1/BZR1 was only detected in the cytosol. The nuclear BIL1/BZR1 increased in the BSS1/BOP1-deficient background and decreased in the BSS1/BOP1-overexpressing background. Our study suggests that the BSS1/BOP1 protein complex inhibits the transport of BIL1/BZR1 to the nucleus from the cytosol and negatively regulates BR signaling.


Bioscience, Biotechnology, and Biochemistry | 2014

Brassinosteroid-related transcription factor BIL1/BZR1 increases plant resistance to insect feeding.

Tomoko Miyaji; Ayumi Yamagami; Nao Kume; Masaaki Sakuta; Tadao Asami; Yutaka Arimoto; Takeshi Nakano

The plant steroid hormones brassinosteroids (BRs) play important roles in plant growth and responses to stresses. The up-regulation of pathogen resistance by BR signaling has been analyzed, but the relationship between BR and insect herbivores remains largely unclear. BIL1/BZR1 is a BR master transcription factor known to be involved in the regulation of plant development through work conducted on a gain of function mutation. Here, we analyzed the function of BIL1/BZR1 in response to insect feeding and demonstrated that resistance against thrip feeding was increased in the bil1-1D/bzr1-1D mutant compared to wild-type. We generated Lotus japonicus transgenic plants that over-express the Arabidopsis bil1/bzr1 mutant, Lj-bil1/bzr1-OX. The Lj-bil1/bzr1-OX plants showed increased resistance to thrip feeding. The expression levels of the jasmoninc acid (JA)-inducible VSP genes were increased in both Arabidopsis bil1-1D/bzr1-1D mutants and L. japonicus Lj-bil1/bzr1-OX plants. The resistance to thrip feeding caused by the BIL1/BZR1 gene may involve JA signaling. Graphical Abstract Over-Expression mutated bil1/bzr1 that is brassinosteroid master transcription factor gives resistance against the thrips feeding to plants.


PLOS ONE | 2015

YCZ-18 is a new brassinosteroid biosynthesis inhibitor.

Keimei Oh; Tadashi Matsumoto; Ayumi Yamagami; Atushi Ogawa; Kazuhiro Yamada; Ryuichiro Suzuki; Takayuki Sawada; Shozo Fujioka; Yuko Yoshizawa; Takeshi Nakano

Plant hormone brassinosteroids (BRs) are a group of polyhydroxylated steroids that play critical roles in regulating broad aspects of plant growth and development. The structural diversity of BRs is generated by the action of several groups of P450s. Brassinazole is a specific inhibitor of C-22 hydroxylase (CYP90B1) in BR biosynthesis, and the application use of brassinazole has emerged as an effective way of complementing BR-deficient mutants to elucidate the functions of BRs. In this article, we report a new triazole-type BR biosynthesis inhibitor, YCZ-18. Quantitative analysis the endogenous levels of BRs in Arabidopsis indicated that YCZ-18 significantly decreased the BR contents in plant tissues. Assessment of the binding affinity of YCZ-18to purified recombinant CYP90D1 indicated that YCZ-18 induced a typical type II binding spectrum with a Kd value of approximately 0.79 μM. Analysis of the mechanisms underlying the dwarf phenotype associated with YCZ-18 treatment of Arabidopsis indicated that the chemically induced dwarf phenotype was caused by a failure of cell elongation. Moreover, dissecting the effect of YCZ-18 on the induction or down regulation of genes responsive to BRs indicated that YCZ-18 regulated the expression of genes responsible for BRs deficiency in Arabidopsis. These findings indicate that YCZ-18 is a potent BR biosynthesis inhibitor and has a new target site, C23-hydroxylation in BR biosynthesis. Application of YCZ-18 will be a good starting point for further elucidation of the detailed mechanism of BR biosynthesis and its regulation.


Bioscience, Biotechnology, and Biochemistry | 2014

BPG3 is a novel chloroplast protein that involves the greening of leaves and related to brassinosteroid signaling

Eriko Yoshizawa; Mai Kaizuka; Ayumi Yamagami; Mieko Higuchi-Takeuchi; Minami Matsui; Yusuke Kakei; Yukihisa Shimada; Masaaki Sakuta; Tadao Asami; Takeshi Nakano

Brassinosteroids are plant steroid hormones that regulate plant organs and chloroplast development. The detailed molecular mechanism for plant development by BR signaling is yet to be revealed, and many points regarding the relationship between BR signaling and chloroplast development remain unknown. We identify here the dominant mutant Brz-insensitive-pale green3-1D (bpg3-1D) from the Arabidopsis FOX lines that show reduced sensitivity to the chlorophyll accumulation promoted by the BR biosynthesis inhibitor, Brassinazole (Brz), in the light. BPG3 encodes a novel chloroplast protein that is evolutionally conserved in bacteria, algae, and higher plants. The expression of BPG3 was induced by light and Brz. The inhibition of electron transport in photosystem II of the chloroplasts was detected in bpg3-1D. These results suggest that BPG3 played an important role in regulating photosynthesis in the chloroplast under BR signaling. Graphical Abstract BR-inhibitor Brz activated chloroplast functions. bpg3 (Brz-insensitive-pale green3) mutant is disrupted in the signaling from BR-deficient condition to chloroplast activation.


Scientific Reports | 2017

Evolutionarily conserved BIL4 suppresses the degradation of brassinosteroid receptor BRI1 and regulates cell elongation

Ayumi Yamagami; Chieko Saito; Miki Nakazawa; Shozo Fujioka; Tomohiro Uemura; Minami Matsui; Masaaki Sakuta; Kazuo Shinozaki; Akihiko Nakano; Tadao Asami; Takeshi Nakano

Brassinosteroids (BRs), plant steroid hormones, play important roles in plant cell elongation and differentiation. To investigate the mechanisms of BR signaling, we previously used the BR biosynthesis inhibitor Brz as a chemical biology tool and identified the Brz-insensitive-long hypocotyl4 mutant (bil4). Although the BIL4 gene encodes a seven-transmembrane-domain protein that is evolutionarily conserved in plants and animals, the molecular function of BIL4 in BR signaling has not been elucidated. Here, we demonstrate that BIL4 is expressed in early elongating cells and regulates cell elongation in Arabidopsis. BIL4 also activates BR signaling and interacts with the BR receptor brassinosteroid insensitive 1 (BRI1) in endosomes. BIL4 deficiency increases the localization of BRI1 in the vacuoles. Our results demonstrate that BIL4 regulates cell elongation and BR signaling via the regulation of BRI1 localization.


The Journal of Steroid Biochemistry and Molecular Biology | 2017

Characterization of synthetic ecdysteroid analogues as functional mimics of brassinosteroids in plant growth

Jutiporn Thussagunpanit; Kanapol Jutamanee; Sureeporn Homvisasevongsa; Apichart Suksamrarn; Ayumi Yamagami; Takeshi Nakano; Tadao Asami

Brassinosteroids (BRs) are plant steroidal hormones that play important roles in many stages of plant growth. Several plant species produce ecdysteroids, which are known as insect molting steroid hormones. In this study, we evaluated the biological activities of three hydroxysteroidal compounds, 20-hydroxyecdysone (ECD), 7,8-dihydro-8α-20-hydroxyecdysone (DHECD), and 7,8-dihydro-5α,8α-20-hydroxyecdysone (α-DHECD), and compared their activities with that of brassinolide (BL), the most potent BR. In rice, DHECD and α-DHECD enhanced the degree of lamina inclination, as do BRs. In Arabidopsis thaliana, DHECD and α-DHECD increased hypocotyl length in the wild-type, and also partially overcame the hypocotyl shortening in the wild-type caused by 0.3μM brassinazole, a specific BR biosynthesis inhibitor. DHECD and α-DHECD partially reduced dwarfism in the BR-biosynthesis-deficient mutant det2. Treatment with DHECD or α-DHECD downregulated the expression of the BR biosynthesis genes DWF4 and CPD, which are generally, suppressed by BR, and upregulated the expression of TCH4 and SAUR-AC1, which are generally promoted by BR. However, their regulated activities were less effective than BL. Moreover, the 10-4M DHECD and α-DHECD induced the accumulation of dephosphorylated BIL1/BZR1 that enhanced BR signaling as a master transcription factor. In contrast, ECD did not affect rice lamina bending, Arabidopsis hypocotyl elongation, the expression levels of BR-related genes and BIL1/BZR1 phosphorylation status. Based on these results, we hypothesize that both DHECD and α-DHECD have functional activities similar to those of BR.

Collaboration


Dive into the Ayumi Yamagami's collaboration.

Top Co-Authors

Avatar

Takeshi Nakano

National Presto Industries

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Minami Matsui

Yokohama City University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge