Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ayumu Yamamoto is active.

Publication


Featured researches published by Ayumu Yamamoto.


Developmental Cell | 2004

Dynamics of Homologous Chromosome Pairing during Meiotic Prophase in Fission Yeast

Da-Qiao Ding; Ayumu Yamamoto; Tokuko Haraguchi; Yasushi Hiraoka

Pairing of homologous chromosomes is important for homologous recombination and correct chromosome segregation during meiosis. It has been proposed that telomere clustering, nuclear oscillation, and recombination during meiotic prophase facilitate homologous chromosome pairing in fission yeast. Here we examined the contributions of these chromosomal events to homologous chromosome pairing, by directly observing the dynamics of chromosomal loci in living cells of fission yeast. Homologous loci exhibited a dynamic process of association and dissociation during the time course of meiotic prophase. Lack of nuclear oscillation reduced association frequency for both centromeric and arm regions of the chromosome. Lack of telomere clustering or recombination reduced association frequency at arm regions, but not significantly at centromeric regions. Our results indicate that homologous chromosomes are spatially aligned by oscillation of telomere-bundled chromosomes and physically linked by recombination at chromosome arm regions; this recombination is not required for association of homologous centromeres.


Genes to Cells | 2000

Large-scale screening of intracellular protein localization in living fission yeast cells by the use of a GFP-fusion genomic DNA library

Da-Qiao Ding; Yuki Tomita; Ayumu Yamamoto; Yuji Chikashige; Tokuko Haraguchi; Yasushi Hiraoka

Intracellular localization is an important part of the characterization of a gene product. In an attempt to search for genes based on the intracellular localization of their products, we constructed a green fluorescent protein (GFP)‐fusion genomic DNA library of S. pombe.


The EMBO Journal | 2003

Monopolar spindle attachment of sister chromatids is ensured by two distinct mechanisms at the first meiotic division in fission yeast

Ayumu Yamamoto; Yasushi Hiraoka

At meiosis I, sister chromatids attach to the same spindle pole (i.e. monopolar attachment). Mechanisms establishing monopolar attachment remain largely unknown. In the fission yeast Schizosaccharomyces pombe, monopolar attachment is established in haploid cells, indicating that homologous chromosomes are dispensable for its establishment. This monopolar attachment requires both mating pheromone signaling and inactivation of Pat1 kinase (a key negative regulator of meiosis). It also requires the meiotic cohesin factor Rec8 but not the recombination factor Rec12. In contrast, in diploid cells, monopolar attachment is established by Pat1 inactivation alone, and does not require mating pheromone signaling. Furthermore, monopolar attachment requires Rec12 in addition to Rec8. These results indicate that monopolar attachment of sister chromatids can be established by two distinct mechanisms in S.pombe, one that is pheromone dependent and recombination independent, and a second that is pheromone independent and recombination dependent. We propose that co‐operation of these two mechanisms generates the high fidelity of monopolar attachment.


Journal of Cell Science | 2003

Linear element formation and their role in meiotic sister chromatid cohesion and chromosome pairing

Monika Molnar; Eveline Doll; Ayumu Yamamoto; Yasushi Hiraoka; Jürg Kohli

Fission yeast does not form synaptonemal complexes in meiotic prophase. Instead, linear elements appear that resemble the axial cores of other eukaryotes. They have been proposed to be minimal structures necessary for proper meiotic chromosome functions. We examined linear element formation in meiotic recombination deficient mutants. The rec12, rec14 and meu13 mutants showed altered linear element formation. Examination of rec12 and other mutants deficient in the initiation of meiotic recombination revealed that occurrence of meiosis-specific DNA breaks is not a precondition for the formation of linear elements. The rec11 and rec8 mutants exhibited strongly impaired linear elements with morphologies specific for these meiotic cohesin mutants. The rec10 and rec16/rep1 mutants lack linear elements completely. The region specificity of loss of recombination in the rec8, rec10 and rec11 mutants can be explained by their defects in linear element formation. Investigation of the rec10 mutant showed that linear elements are basically dispensable for sister chromatid cohesion, but contribute to full level pairing of homologous chromosomes.


Journal of Cell Science | 2003

Cytoplasmic dynein in fungi: insights from nuclear migration

Ayumu Yamamoto; Yasushi Hiraoka

Cytoplasmic dynein is a microtubule motor that mediates various biological processes, including nuclear migration and organelle transport, by moving on microtubules while associated with various cellular structures. The association of dynein with cellular structures and the activation of its motility are crucial steps in dynein-dependent processes. However, the mechanisms involved remain largely unknown. In fungi, dynein is required for nuclear migration. In budding yeast, nuclear migration is driven by the interaction of astral microtubules with the cell cortex; the interaction is mediated by dynein that is probably associated with the cortex. Recent studies suggest that budding yeast dynein is first recruited to microtubules, then delivered to the cortex by microtubules and finally activated by association with the cortex. Nuclear migration in many other fungi is probably driven by a similar mechanism. Recruitment of dynein to microtubules and its subsequent activation upon association with cellular structures are perhaps common to many dynein-dependent eukaryotic processes, including organelle transport.


Journal of Cell Biology | 2013

Microtubule-organizing center formation at telomeres induces meiotic telomere clustering

Masashi Yoshida; Satoshi Katsuyama; Kazuki Tateho; Hiroto Nakamura; Junpei Miyoshi; Tatsunori Ohba; Hirotada Matsuhara; Futaba Miki; Koei Okazaki; Tokuko Haraguchi; Osami Niwa; Yasushi Hiraoka; Ayumu Yamamoto

Telomere-localized SUN and KASH proteins induce formation of a microtubule-based “telocentrosome” that fosters microtubule motor-dependent telomere clustering.


PLOS Genetics | 2011

Chiasmata Promote Monopolar Attachment of Sister Chromatids and Their Co-Segregation toward the Proper Pole during Meiosis I

Yukinobu Hirose; Ren Suzuki; Tatsunori Ohba; Yumi Hinohara; Hirotada Matsuhara; Masashi Yoshida; Yuta Itabashi; Hiroshi Murakami; Ayumu Yamamoto

The chiasma is a structure that forms between a pair of homologous chromosomes by crossover recombination and physically links the homologous chromosomes during meiosis. Chiasmata are essential for the attachment of the homologous chromosomes to opposite spindle poles (bipolar attachment) and their subsequent segregation to the opposite poles during meiosis I. However, the overall function of chiasmata during meiosis is not fully understood. Here, we show that chiasmata also play a crucial role in the attachment of sister chromatids to the same spindle pole and in their co-segregation during meiosis I in fission yeast. Analysis of cells lacking chiasmata and the cohesin protector Sgo1 showed that loss of chiasmata causes frequent bipolar attachment of sister chromatids during anaphase. Furthermore, high time-resolution analysis of centromere dynamics in various types of chiasmate and achiasmate cells, including those lacking the DNA replication checkpoint factor Mrc1 or the meiotic centromere protein Moa1, showed the following three outcomes: (i) during the pre-anaphase stage, the bipolar attachment of sister chromatids occurs irrespective of chiasma formation; (ii) the chiasma contributes to the elimination of the pre-anaphase bipolar attachment; and (iii) when the bipolar attachment remains during anaphase, the chiasmata generate a bias toward the proper pole during poleward chromosome pulling that results in appropriate chromosome segregation. Based on these results, we propose that chiasmata play a pivotal role in the selection of proper attachments and provide a backup mechanism that promotes correct chromosome segregation when improper attachments remain during anaphase I.


Chromosoma | 2000

Characterization of fission yeast meiotic mutants based on live observation of meiotic prophase nuclear movement

Yasushi Hiraoka; Da-Qiao Ding; Ayumu Yamamoto; Chihiro Tsutsumi; Yuji Chikashige

Abstract.We characterized four meiotic mutants of the fission yeast Schizosaccharomyces pombe by live observation of nuclear movement. Nuclei were stained with either the DNA-specific fluorescent dye Hoechst 33342 or jellyfish green fluorescent protein (GFP) fused with the N-terminal portion of DNA polymerase α. We first followed nuclear dynamics in wild-type cells to determine the temporal sequence of meiotic events: nuclear fusion in the conjugated zygote is immediately followed by oscillatory nuclear movements that continue for 146 min; then, after coming to rest, the nucleus remains in the center of the cell for 26 min before the first meiotic division. Next we examined nuclear dynamics in four meiotic mutants: mei1 (also called mat2), mei4, dhc1, and taz1. Mei1 and mei4 both arrest during meiotic prophase; our observations, however, show that the timing of mei1 arrest is quite different from that of mei4: the mei1 mutant arrests after nuclear fusion but before starting the oscillatory nuclear movements, while the mei4 mutant arrests after the nucleus has completed the oscillatory movements but before the first meiotic division. We also show examples of the dynamic phenotypes of dhc1 and taz1, both of which complete meiosis but exhibit impaired nuclear movement and reduced frequencies of homologous recombination: the dhc1 mutant exhibits no nuclear movement after nuclear fusion, while the taz1 mutant exhibits severely impaired nuclear movement after nuclear fusion.


Journal of Cell Biology | 2008

Spindle checkpoint activation at meiosis I advances anaphase II onset via meiosis-specific APC/C regulation

Ayumu Yamamoto; Kenji Kitamura; Daisuke Hihara; Yukinobu Hirose; Satoshi Katsuyama; Yasushi Hiraoka

During mitosis, the spindle assembly checkpoint (SAC) inhibits the Cdc20-activated anaphase-promoting complex/cyclosome (APC/CCdc20), which promotes protein degradation, and delays anaphase onset to ensure accurate chromosome segregation. However, the SAC function in meiotic anaphase regulation is poorly understood. Here, we examined the SAC function in fission yeast meiosis. As in mitosis, a SAC factor, Mad2, delayed anaphase onset via Slp1 (fission yeast Cdc20) when chromosomes attach to the spindle improperly. However, when the SAC delayed anaphase I, the interval between meiosis I and II shortened. Furthermore, anaphase onset was advanced and the SAC effect was reduced at meiosis II. The advancement of anaphase onset depended on a meiosis-specific, Cdc20-related factor, Fzr1/Mfr1, which contributed to anaphase cyclin decline and anaphase onset and was inefficiently inhibited by the SAC. Our findings show that impacts of SAC activation are not confined to a single division at meiosis due to meiosis-specific APC/C regulation, which has probably been evolved for execution of two meiotic divisions.


Cellular and Molecular Life Sciences | 2014

Gathering up meiotic telomeres: a novel function of the microtubule-organizing center

Ayumu Yamamoto

Abstract During meiosis, telomeres cluster and promote homologous chromosome pairing. Telomere clustering depends on conserved SUN and KASH domain nuclear membrane proteins, which form a complex called the linker of nucleoskeleton and cytoskeleton (LINC) and connect telomeres with the cytoskeleton. It has been thought that LINC-mediated cytoskeletal forces induce telomere clustering. However, how cytoskeletal forces induce telomere clustering is not fully understood. Recent study of fission yeast has shown that the LINC complex forms the microtubule-organizing center (MTOC) at the telomere, which has been designated as the “telocentrosome”, and that microtubule motors gather telomeres via telocentrosome-nucleated microtubules. This MTOC-dependent telomere clustering might be conserved in other eukaryotes. Furthermore, the MTOC-dependent clustering mechanism appears to function in various other biological events. This review presents an overview of the current understanding of the mechanism of meiotic telomere clustering and discusses the universality of the MTOC-dependent clustering mechanism.

Collaboration


Dive into the Ayumu Yamamoto's collaboration.

Top Co-Authors

Avatar

Yasushi Hiraoka

National Institute of Information and Communications Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tokuko Haraguchi

National Institute of Information and Communications Technology

View shared research outputs
Top Co-Authors

Avatar

Da-Qiao Ding

National Institute of Information and Communications Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge