Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ayush Dagvadorj is active.

Publication


Featured researches published by Ayush Dagvadorj.


American Journal of Pathology | 2008

Stat3 promotes metastatic progression of prostate cancer.

Junaid Abdulghani; Lei Gu; Ayush Dagvadorj; Jacqueline Lutz; Benjamin E. Leiby; Gloria Bonuccelli; Michael P. Lisanti; Tobias Zellweger; Kalle Alanen; Tuomas Mirtti; Tapio Visakorpi; Lukas Bubendorf; Marja T. Nevalainen

There are currently no effective therapies for metastatic prostate cancer because the molecular mechanisms that underlie the metastatic spread of primary prostate cancer are unclear. Transcription factor Stat3 is constitutively active in malignant prostate epithelium, and its activation is associated with high histological grade and advanced cancer stage. In this work, we hypothesized that Stat3 stimulates metastatic progression of prostate cancer. We show that Stat3 is active in 77% of lymph node and 67% of bone metastases of clinical human prostate cancers. Importantly, adenoviral gene delivery of wild-type Stat3 (AdWTStat3) to DU145 human prostate cancer cells increased the number of lung metastases by 33-fold in an experimental metastasis assay compared with controls. Using various methods to inhibit Stat3, we demonstrated that Stat3 promotes human prostate cancer cell migration. Stat3 induced the formation of lamellipodia in both DU145 and PC-3 cells, further supporting the concept that Stat3 promotes a migratory phenotype of human prostate cancer cells. Moreover, Stat3 caused the rearrangement of cytoplasmic actin stress fibers and microtubules in both DU145 and PC-3 cells. Finally, inhibition of the Jak2 tyrosine kinase decreased both activation of Stat3 and prostate cancer cell motility. Collectively, these data indicate that transcription factor Stat3 is involved in metastatic behavior of human prostate cancer cells and may provide a therapeutic target to prevent metastatic spread of primary prostate cancer.


Cancer Research | 2008

Transcription Factor Stat5 Synergizes with Androgen Receptor in Prostate Cancer Cells

Shyh-Han Tan; Ayush Dagvadorj; Feng Shen; Lei Gu; Zhiyong Liao; Junaid Abdulghani; Ying Zhang; Edward P. Gelmann; Tobias Zellweger; Zoran Culig; Tapio Visakorpi; Lukas Bubendorf; Robert A. Kirken; James G. Karras; Marja T. Nevalainen

The molecular mechanisms underlying progression of prostate cancer to the hormone-independent state are poorly understood. Signal transducer and activator of transcription 5a and 5b (Stat5a/b) is critical for the viability of human prostate cancer cells. We have previously shown that Stat5a/b is constitutively active in high-grade human prostate cancer, but not in normal prostate epithelium. Furthermore, activation of Stat5a/b in primary human prostate cancer predicted early disease recurrence. We show here that transcription factor Stat5a/b is active in 95% of clinical hormone-refractory human prostate cancers. We show for the first time that Stat5a/b synergizes with androgen receptor (AR) in prostate cancer cells. Specifically, active Stat5a/b increases transcriptional activity of AR, and AR, in turn, increases transcriptional activity of Stat5a/b. Liganded AR and active Stat5a/b physically interact in prostate cancer cells and, importantly, enhance nuclear localization of each other. The work presented here provides the first evidence of synergy between AR and the prolactin signaling protein Stat5a/b in human prostate cancer cells.


Endocrine-related Cancer | 2010

Stat5 promotes metastatic behavior of human prostate cancer cells in vitro and in vivo.

Lei Gu; Paraskevi Vogiatzi; Martin Puhr; Ayush Dagvadorj; Jacqueline Lutz; Amy Ryder; Sankar Addya; Paolo Fortina; Carlton R. Cooper; Benjamin E. Leiby; Abhijit Dasgupta; Terry Hyslop; Lukas Bubendorf; Kalle Alanen; Tuomas Mirtti; Marja T. Nevalainen

There are no effective therapies for disseminated prostate cancer. Constitutive activation of Stat5 in prostate cancer is associated with cancer lesions of high histological grade. We have shown that Stat5 is activated in 61% of distant metastases of clinical prostate cancer. Active Stat5 increased metastases formation of prostate cancer cells in nude mice by 11-fold in an experimental metastases assay. Active Stat5 promoted migration and invasion of prostate cancer cells, and induced rearrangement of the microtubule network. Active Stat5 expression was associated with decreased cell surface E-cadherin levels, while heterotypic adhesion of prostate cancer cells to endothelial cells was stimulated by active Stat5. Activation of Stat5 and Stat5-induced binding of prostate cancer cells to endothelial cells were decreased by inhibition of Src but not of Jak2. Gene expression profiling indicated that 21% of Stat5-regulated genes in prostate cancer cells were related to metastases, while 7.9% were related to proliferation and 3.9% to apoptosis. The work presented here provides the first evidence of Stat5 involvement in the induction of metastatic behavior of human prostate cancer cells in vitro and in vivo. Stat5 may provide a therapeutic target protein for disseminated prostate cancer.


Clinical Cancer Research | 2008

Transcription Factor Signal Transducer and Activator of Transcription 5 Promotes Growth of Human Prostate Cancer Cells In vivo

Ayush Dagvadorj; Robert A. Kirken; Benjamin E. Leiby; James G. Karras; Marja T. Nevalainen

Purpose: Signal transducer and activator of transcription 5a/b (Stat5a/b) is the key mediator of prolactin effects in prostate cancer cells via activation of Janus-activated kinase 2. Prolactin is a locally produced growth factor in human prostate cancer. Prolactin protein expression and constitutive activation of Stat5a/b are associated with high histologic grade of clinical prostate cancer. Moreover, activation of Stat5a/b in primary prostate cancer predicts early disease recurrence. Here, we inhibited Stat5a/b by several different methodologic approaches. Our goal was to establish a proof of principle that Stat5a/b is critical for prostate cancer cell viability in vitro and for prostate tumor growth in vivo. Experimental Design: We inhibited Stat5a/b protein expression by antisense oligonucleotides or RNA interference and transcriptional activity of Stat5a/b by adenoviral expression of a dominant-negative mutant of Stat5a/b in prostate cancer cells in culture. Moreover, Stat5a/b activity was suppressed in human prostate cancer xenograft tumors in nude mice. Stat5a/b regulation of Bcl-XL and cyclin D1 protein levels was shown by antisense suppression of Stat5a/b protein expression followed by Western blotting. Results and Conclusions: We show here that inhibition of Stat5a/b by antisense oligonucleotides, RNA interference, or adenoviral expression of dominant-negative Stat5a/b effectively kills prostate cancer cells. Moreover, we show that Stat5a/b is critical for human prostate cancer xenograft growth in nude mice. The effects of Stat5a/b on the viability of prostate cancer cells involve Stat5a/b regulation of Bcl-XL and cyclin D1 protein levels but not the expression or activation of Stat3. This work establishes Stat5a/b as a therapeutic target protein for prostate cancer. Pharmacologic inhibition of Stat5a/b in prostate cancer can be achieved by small-molecule inhibitors of transactivation, dimerization, or DNA binding of Stat5a/b.


American Journal of Pathology | 2010

Transcription Factor Stat3 Stimulates Metastatic Behavior of Human Prostate Cancer Cells in Vivo, whereas Stat5b Has a Preferential Role in the Promotion of Prostate Cancer Cell Viability and Tumor Growth

Lei Gu; Ayush Dagvadorj; Jacqueline Lutz; Benjamin E. Leiby; Gloria Bonuccelli; Michael P. Lisanti; Sankar Addya; Paolo Fortina; Abhijit Dasgupta; Terry Hyslop; Lukas Bubendorf; Marja T. Nevalainen

Identification of the molecular changes that promote viability and metastatic behavior of prostate cancer is critical for the development of improved therapeutic interventions. Stat5a/b and Stat3 are both constitutively active in locally-confined and advanced prostate cancer, and both transcription factors have been reported to be critical for the viability of prostate cancer cells. We recently showed that Stat3 promotes metastatic behavior of human prostate cancer cells not only in vitro but also in an in vivo experimental metastases model. In this work, we compare side-by-side Stat5a/b versus Stat3 in the promotion of prostate cancer cell viability, tumor growth, and induction of metastatic colonization in vivo. Inhibition of Stat5a/b induced massive death of prostate cancer cells in culture and reduced both subcutaneous and orthotopic prostate tumor growth, whereas Stat3 had a predominant role over Stat5a/b in promoting metastases formation of prostate cancer cells in vivo in nude mice. The molecular mechanisms underlying the differential biological effects induced by these two transcription factors involve largely different sets of genes regulated by Stat5a/b versus Stat3 in human prostate cancer model systems. Of the two Stat5 homologs, Stat5b was more important for supporting growth of prostate cancer cells than Stat5a. This work provides the first mechanistic comparison of the biological effects induced by transcription factors Stat5a/b versus Stat3 in prostate cancer.


Clinical Cancer Research | 2008

Androgen-regulated and highly tumorigenic human prostate cancer cell line established from a transplantable primary CWR22 tumor

Ayush Dagvadorj; Shyh-Han Tan; Zhiyong Liao; Luciane R. Cavalli; Bassem R. Haddad; Marja T. Nevalainen

Purpose: One of the major obstacles in understanding the molecular mechanisms underlying the transition of prostate cancer growth from androgen dependency to a hormone-refractory state is the lack of androgen-regulated and tumorigenic human prostate cancer cell lines. Experimental Design: We have established and characterized a new human prostate cancer cell line, CWR22Pc, derived from the primary CWR22 human prostate xenograft tumors. Results: The growth of CWR22Pc cells is induced markedly by dihydrotestosterone, and CWR22Pc cells express high levels of androgen receptor (AR) and prostate-specific antigen (PSA). Importantly, PSA expression in CWR22Pc cells is regulated by androgens. Stat5a/b, Stat3, Akt, and mitogen-activated protein kinase were constitutively active or cytokine inducible in CWR22Pc cells. The AR in CWR22Pc cells contains the H874Y mutation, but not the exon 3 duplication or other mutations. When inoculated subcutaneously into dihydrotestosterone-supplemented castrated nude mice, large tumors formed rapidly in 20 of 20 mice, whereas no tumors developed in mice without circulating dihydrotestosterone. Moreover, the serum PSA levels correlated with the tumor volumes. When androgens were withdrawn from the CWR22Pc tumors grown in nude mice, the tumors initially shrank but regrew back as androgen-independent tumors. Conclusions: This androgen-regulated and tumorigenic human prostate cancer cell line provides a valuable tool for studies on androgen regulation of prostate cancer cells and on the molecular mechanisms taking place in growth promotion of prostate cancer when androgens are withdrawn from the growth environment. CWR22Pc cells also provide a model system for studies on the regulation of transcriptional activity of mutated H874YAR in a prostate cancer cell context.


Clinical Cancer Research | 2013

Pharmacologic Inhibition of Jak2–Stat5 Signaling By Jak2 Inhibitor AZD1480 Potently Suppresses Growth of Both Primary and Castrate-Resistant Prostate Cancer

Lei Gu; Zhiyong Liao; David T. Hoang; Ayush Dagvadorj; Shilpa Gupta; Shauna Blackmon; Elyse Ellsworth; Pooja Talati; Benjamin E. Leiby; Michael Zinda; Edouard J. Trabulsi; Peter McCue; Leonard G. Gomella; Dennis Huszar; Marja T. Nevalainen

Purpose: Progression of prostate cancer to the lethal castrate-resistant stage coincides with loss of responsiveness to androgen deprivation and requires development of novel therapies. We previously provided proof-of-concept that Stat5a/b is a therapeutic target protein for prostate cancer. Here, we show that pharmacologic targeting of Jak2-dependent Stat5a/b signaling by the Jak2 inhibitor AZD1480 blocks castrate-resistant growth of prostate cancer. Experimental Design: Efficacy of AZD1480 in disrupting Jak2–Stat5a/b signaling and decreasing prostate cancer cell viability was evaluated in prostate cancer cells. A unique prostate cancer xenograft mouse model (CWR22Pc), which mimics prostate cancer clinical progression in patients, was used to assess in vivo responsiveness of primary and castrate-resistant prostate cancer (CRPC) to AZD1480. Patient-derived clinical prostate cancers, grown ex vivo in organ explant cultures, were tested for responsiveness to AZD1480. Results: AZD1480 robustly inhibited Stat5a/b phosphorylation, dimerization, nuclear translocation, DNA binding, and transcriptional activity in prostate cancer cells. AZD1480 reduced prostate cancer cell viability sustained by Jak2–Stat5a/b signaling through induction of apoptosis, which was rescued by constitutively active Stat5a/b. In mice, pharmacologic targeting of Stat5a/b by AZD1480 potently blocked growth of primary androgen-dependent as well as recurrent castrate-resistant CWR22Pc xenograft tumors, and prolonged survival of tumor-bearing mice versus vehicle or docetaxel-treated mice. Finally, nine of 12 clinical prostate cancers responded to AZD1480 by extensive apoptotic epithelial cell loss, concurrent with reduced levels of nuclear Stat5a/b. Conclusions: We report the first evidence for efficacy of pharmacologic targeting of Stat5a/b as a strategy to inhibit castrate-resistant growth of prostate cancer, supporting further clinical development of Stat5a/b inhibitors as therapy for advanced prostate cancer. Clin Cancer Res; 19(20); 5658–74. ©2013 AACR.


Molecular Cancer Therapeutics | 2015

Structure-Based Screen Identifies a Potent Small Molecule Inhibitor of Stat5a/b with Therapeutic Potential for Prostate Cancer and Chronic Myeloid Leukemia

Zhiyong Liao; Lei Gu; Jenny Vergalli; Samanta A. Mariani; Marco De Dominici; Ravi K. Lokareddy; Ayush Dagvadorj; Puranik Purushottamachar; Peter McCue; Edouard J. Trabulsi; Shilpa Gupta; Elyse Ellsworth; Shauna Blackmon; Adam Ertel; Paolo Fortina; Benjamin E. Leiby; Guanjun Xia; Hallgeir Rui; David T. Hoang; Leonard G. Gomella; Gino Cingolani; Vincent C. O. Njar; Nagarajan Pattabiraman; Bruno Calabretta; Marja T. Nevalainen

Bypassing tyrosine kinases responsible for Stat5a/b phosphorylation would be advantageous for therapy development for Stat5a/b-regulated cancers. Here, we sought to identify small molecule inhibitors of Stat5a/b for lead optimization and therapy development for prostate cancer and Bcr-Abl–driven leukemias. In silico screening of chemical structure databases combined with medicinal chemistry was used for identification of a panel of small molecule inhibitors to block SH2 domain–mediated docking of Stat5a/b to the receptor-kinase complex and subsequent phosphorylation and dimerization. We tested the efficacy of the lead compound IST5-002 in experimental models and patient samples of two known Stat5a/b-driven cancers, prostate cancer and chronic myeloid leukemia (CML). The lead compound inhibitor of Stat5-002 (IST5-002) prevented both Jak2 and Bcr-Abl–mediated phosphorylation and dimerization of Stat5a/b, and selectively inhibited transcriptional activity of Stat5a (IC50 = 1.5μmol/L) and Stat5b (IC50 = 3.5 μmol/L). IST5-002 suppressed nuclear translocation of Stat5a/b, binding to DNA and Stat5a/b target gene expression. IST5-002 induced extensive apoptosis of prostate cancer cells, impaired growth of prostate cancer xenograft tumors, and induced cell death in patient-derived prostate cancers when tested ex vivo in explant organ cultures. Importantly, IST5-002 induced robust apoptotic death not only of imatinib-sensitive but also of imatinib-resistant CML cell lines and primary CML cells from patients. IST5-002 provides a lead structure for further chemical modifications for clinical development for Stat5a/b-driven solid tumors and hematologic malignancies. Mol Cancer Ther; 14(8); 1777–93. ©2015 AACR.


American Journal of Pathology | 2015

Jak2-Stat5a/b Signaling Induces Epithelial-to-Mesenchymal Transition and Stem-Like Cell Properties in Prostate Cancer

Pooja Talati; Lei Gu; Elyse Ellsworth; Melanie A. Girondo; Marco Trerotola; David T. Hoang; Benjamin E. Leiby; Ayush Dagvadorj; Peter McCue; Edouard J. Trabulsi; Leonard G. Gomella; Andrew E. Aplin; Lucia R. Languino; Alessandro Fatatis; Hallgeir Rui; Marja T. Nevalainen

Active Stat5a/b predicts early recurrence and disease-specific death in prostate cancer (PC), which both typically are caused by development of metastatic disease. Herein, we demonstrate that Stat5a/b induces epithelial-to-mesenchymal transition (EMT) of PC cells, as shown by Stat5a/b regulation of EMT marker expression (Twist1, E-cadherin, N-cadherin, vimentin, and fibronectin) in PC cell lines, xenograft tumors in vivo, and patient-derived PCs ex vivo using organ explant cultures. Jak2-Stat5a/b signaling induced functional end points of EMT as well, indicated by disruption of epithelial cell monolayers and increased migration and adhesion of PC cells to fibronectin. Knockdown of Twist1 suppressed Jak2-Stat5a/b-induced EMT properties of PC cells, which were rescued by re-introduction of Twist1, indicating that Twist1 mediates Stat5a/b-induced EMT in PC cells. While promoting EMT, Jak2-Stat5a/b signaling induced stem-like properties in PC cells, such as sphere formation and expression of cancer stem cell markers, including BMI1. Mechanistically, both Twist1 and BMI1 were critical for Stat5a/b induction of stem-like features, because genetic knockdown of Twist1 suppressed Stat5a/b-induced BMI1 expression and sphere formation in stem cell culture conditions, which were rescued by re-introduction of BMI1. By using human prolactin knock-in mice, we demonstrate that prolactin-Stat5a/b signaling promoted metastases formation of PC cells in vivo. In conclusion, our data support the concept that Jak2-Stat5a/b signaling promotes metastatic progression of PC by inducing EMT and stem cell properties in PC cells.


Molecular Cancer Therapeutics | 2015

Inhibition of Stat5a/b Enhances Proteasomal Degradation of Androgen Receptor Liganded by Antiandrogens in Prostate Cancer

David T. Hoang; Lei Gu; Zhiyong Liao; Feng Shen; Pooja Talati; Mateusz Koptyra; Shyh-Han Tan; Elyse Ellsworth; Shilpa Gupta; Heather L. Montie; Ayush Dagvadorj; Saija Savolainen; Benjamin E. Leiby; Tuomas Mirtti; Diane E. Merry; Marja T. Nevalainen

Although poorly understood, androgen receptor (AR) signaling is sustained despite treatment of prostate cancer with antiandrogens and potentially underlies development of incurable castrate-resistant prostate cancer. However, therapies targeting the AR signaling axis eventually fail when prostate cancer progresses to the castrate-resistant stage. Stat5a/b, a candidate therapeutic target protein in prostate cancer, synergizes with AR to reciprocally enhance the signaling of both proteins. In this work, we demonstrate that Stat5a/b sequesters antiandrogen-liganded (MDV3100, bicalutamide, flutamide) AR in prostate cancer cells and protects it against proteasomal degradation in prostate cancer. Active Stat5a/b increased nuclear levels of both unliganded and antiandrogen-liganded AR, as demonstrated in prostate cancer cell lines, xenograft tumors, and clinical patient-derived prostate cancer samples. Physical interaction between Stat5a/b and AR in prostate cancer cells was mediated by the DNA-binding domain of Stat5a/b and the N-terminal domain of AR. Moreover, active Stat5a/b increased AR occupancy of the prostate-specific antigen promoter and AR-regulated gene expression in prostate cancer cells. Mechanistically, both Stat5a/b genetic knockdown and antiandrogen treatment induced proteasomal degradation of AR in prostate cancer cells, with combined inhibition of Stat5a/b and AR leading to maximal loss of AR protein and prostate cancer cell viability. Our results indicate that therapeutic targeting of AR in prostate cancer using antiandrogens may be substantially improved by targeting of Stat5a/b. Mol Cancer Ther; 14(3); 713–26. ©2014 AACR.

Collaboration


Dive into the Ayush Dagvadorj's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lei Gu

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Benjamin E. Leiby

Thomas Jefferson University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zhiyong Liao

Thomas Jefferson University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David T. Hoang

Thomas Jefferson University

View shared research outputs
Top Co-Authors

Avatar

Elyse Ellsworth

Thomas Jefferson University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Junaid Abdulghani

Penn State Cancer Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge