Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Azhar Alhasawi is active.

Publication


Featured researches published by Azhar Alhasawi.


Frontiers in Cell and Developmental Biology | 2015

Dysfunctional mitochondrial bioenergetics and the pathogenesis of hepatic disorders

Christopher Auger; Azhar Alhasawi; Manuraj Contavadoo; Vasu D. Appanna

The liver is involved in a variety of critical biological functions including the homeostasis of glucose, fatty acids, amino acids, and the synthesis of proteins that are secreted in the blood. It is also at the forefront in the detoxification of noxious metabolites that would otherwise upset the functioning of the body. As such, this vital component of the mammalian system is exposed to a notable quantity of toxicants on a regular basis. It therefore comes as no surprise that there are over a hundred disparate hepatic disorders, encompassing such afflictions as fatty liver disease, hepatitis, and liver cancer. Most if not all of liver functions are dependent on energy, an ingredient that is primarily generated by the mitochondrion, the power house of all cells. This organelle is indispensable in providing adenosine triphosphate (ATP), a key effector of most biological processes. Dysfunctional mitochondria lead to a shortage in ATP, the leakage of deleterious reactive oxygen species (ROS), and the excessive storage of fats. Here we examine how incapacitated mitochondrial bioenergetics triggers the pathogenesis of various hepatic diseases. Exposure of liver cells to detrimental environmental hazards such as oxidative stress, metal toxicity, and various xenobiotics results in the inactivation of crucial mitochondrial enzymes and decreased ATP levels. The contribution of the latter to hepatic disorders and potential therapeutic cues to remedy these conditions are elaborated.


Microbiological Research | 2015

Glycine metabolism and anti-oxidative defence mechanisms in Pseudomonas fluorescens

Azhar Alhasawi; Zachary Castonguay; Nishma D. Appanna; Christopher Auger; Vasu D. Appanna

The role of metabolism in anti-oxidative defence is only now beginning to emerge. Here, we show that the nutritionally-versatile microbe, Pseudomonas fluorescens, reconfigures its metabolism in an effort to generate NADPH, ATP and glyoxylate in order to fend off oxidative stress. Glyoxylate was produced predominantly via the enhanced activities of glycine dehydrogenase-NADP(+) (GDH), glycine transaminase (GTA) and isocitrate lyase (ICL) in a medium exposed to hydrogen peroxide (H₂O₂). This ketoacid was utilized to produce ATP by substrate-level phosphorylation and to neutralize reactive oxygen species with the concomitant formation of formate. The latter was also a source of NADPH, a process mediated by formate dehydrogenase-NADP(+) (FDH). The increased activities of phosphoenolpyruvate carboxylase (PEPC) and pyruvate orthophosphate dikinase (PPDK) worked in tandem to synthesize ATP in the H₂O₂-challenged cells that had markedly diminished capacity for oxidative phosphorylation. These metabolic networks provide an effective means of combating ROS and reveal therapeutic targets against microbes resistant to oxidative stress.


Journal of Applied Microbiology | 2014

Zinc toxicity and ATP production in Pseudomonas fluorescens

Azhar Alhasawi; Christopher Auger; Varun P. Appanna; M. Chahma; Vasu D. Appanna

To identify the molecular networks in Pseudomonas fluorescens that convey resistance to toxic concentrations of Zn, a common pollutant and hazard to biological systems.


Journal of Nutrition Health & Aging | 2015

Brain metabolism and Alzheimer's disease: the prospect of a metabolite-based therapy.

Sean C. Thomas; Azhar Alhasawi; Varun P. Appanna; Christopher Auger; Vasu D. Appanna

The brain is one of the most energy-demanding organs in the body. It has evolved intricate metabolic networks to fulfill this need and utilizes a variety of substrates to generate ATP, the universal energy currency. Any disruption in the supply of energy results in various abnormalities including Alzheimer’s disease (AD), a condition with markedly diminished cognitive ability. Astrocytes are an important participant in maintaining the cerebral ATP budget. However, under oxidative stress induced by numerous factors including aluminum toxicity, the ability of astroctyes to generate ATP is impaired due to dysfunctional mitochondria. This leads to globular, glycolytic, lipogenic and ATP-deficient astrocytes, cerebral characteristics common in AD patients. The reversal of these perturbations by such natural metabolites as pyruvate, α-ketoglutarate, acetoacetate and L-carnitine provides valuable therapeutic cues against AD.


Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology | 2016

The role of formate in combatting oxidative stress

Sean C. Thomas; Azhar Alhasawi; Christopher Auger; Abdelwahab Omri; Vasu D. Appanna

The interaction of keto-acids with reactive oxygen species (ROS) is known to produce the corresponding carboxylic acid with the concomitant formation of CO2. Formate is liberated when the keto-acid glyoxylate neutralizes ROS. Here we report on how formate is involved in combating oxidative stress in the nutritionally-versatile Pseudomonas fluorescens. When the microbe was subjected to hydrogen peroxide (H2O2), the levels of formate were 8 and two-fold higher in the spent fluid and the soluble cell-free extracts obtained in the stressed cultures compared to the controls respectively. Formate was subsequently utilized as a reducing force to generate NADPH and succinate. The former is mediated by formate dehydrogenase (FDH-NADP), whose activity was enhanced in the stressed cells. Fumarate reductase that catalyzes the conversion of fumarate into succinate was also markedly increased in the stressed cells. These enzymes were modulated by H2O2. While the stressed whole cells produced copious amounts of formate in the presence of glycine, the cell-free extracts synthesized ATP and succinate from formate. Although the exact role of formate in anti-oxidative defence has to await further investigation, the data in this report suggest that this carboxylic acid may be a potent reductive force against oxidative stress.


Journal of Applied Microbiology | 2017

Metabolic defence against oxidative stress: the road less travelled so far

Joe Lemire; Azhar Alhasawi; Varun P. Appanna; Sujeenthar Tharmalingam; Vasu D. Appanna

Bacteria have survived, and many have thrived, since antiquity in the presence of the highly‐reactive chalcogen—oxygen (O2). They are known to evoke intricate strategies to defend themselves from the reactive by‐products of oxygen—reactive oxygen species (ROS). Many of these detoxifying mechanisms have been extensively characterized; superoxide dismutase, catalases, alkyl hydroperoxide reductase and the glutathione (GSH)‐cycling system are responsible for neutralizing specific ROS. Meanwhile, a pool of NADPH—the reductive engine of many ROS‐combating enzymes—is maintained by metabolic enzymes including, but not exclusively, glucose‐6 phosphate dehydrogenase (G6PDH) and NADP‐dependent isocitrate dehydrogenase (ICDH‐NADP). So, it is not surprising that evidence continues to emerge demonstrating the pivotal role metabolism plays in mitigating ROS toxicity. Stemming from its ability to concurrently decrease the production of the pro‐oxidative metabolite, NADH, while augmenting the antioxidative metabolite, NADPH, metabolism is the fulcrum of cellular redox potential. In this review, we will discuss the mounting evidence positioning metabolism and metabolic shifts observed during oxidative stress, as critical strategies microbes utilize to thrive in environments that are rife with ROS. The contribution of ketoacids—moieties capable of non‐enzymatic decarboxylation in the presence of oxidants—as ROS scavengers will be elaborated alongside the metabolic pathways responsible for their homeostases. Further, the signalling role of the carboxylic acids generated following the ketoacid‐mediated detoxification of the ROS will be commented on within the context of oxidative stress.


Metabolomics | 2015

Aspartate metabolism and pyruvate homeostasis triggered by oxidative stress in Pseudomonas fluorescens: a functional metabolomic study

Azhar Alhasawi; Martine Leblanc; Nishma D. Appanna; Christopher Auger; Vasu D. Appanna

There is mounting evidence that metabolic reprogramming is critical for the survival of organisms exposed to changing and stressed environments. Using the soil microbe Pseudomonas fluorescens as a model system, we demonstrate that the metabolic networks aimed at the conversion of aspartate into pyruvate are enhanced in the presence of hydrogen peroxide (H2O2). The metabolites pyruvate, oxaloacetate and acetate were increased in the treated cultures as measured by HPLC. Enzymes such as aspartate transaminase and phosphoenolpyruvate carboxylase (PEPC) that mediate the conversion of aspartate to phosphoenolpyruvate (PEP) were up-regulated. This high-energy phosphate was readily converted into ATP, a process facilitated by the increased activity of pyruvate orthophosphate dikinase (PPDK) and phosphoenolpyruvate synthase (PEPS) as oxidative phosphorylation was severely compromised. The ensuing formation of pyruvate readily detoxified reactive oxygen species with the concomitant formation of acetate. This H2O2-induced metabolic reconfiguration not only helps generate the antioxidants necessary to thwart oxidative stress but also powers the formation of energy.


Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology | 2017

The role of glutamine synthetase in energy production and glutamine metabolism during oxidative stress

Nohaiah Aldarini; Azhar Alhasawi; Sean C. Thomas; Vasu D. Appanna

Oxidative stress is known to severely impede aerobic adenosine triphosphate (ATP) synthesis. However, the metabolically-versatile Pseudomonas fluorescens survives this challenge by invoking alternative ATP-generating networks. When grown in a medium with glutamine as the sole organic nutrient in the presence of H2O2, the microbe utilizes glutamine synthetase (GS) to modulate its energy budget. The activity of this enzyme that mediates the release of energy stored in glutamine was sharply increased in the stressed cells compared to the controls. The enhanced activities of such enzymes as acetate kinase, adenylate kinase and nucleotide diphosphate kinase ensured the efficacy of this ATP producing-machine by transferring the high energy phosphate. The elevated amounts of phosphoenol pyruvate carboxylase and pyruvate orthophosphate dikinase recorded in the H2O2 exposed cells provided another route to ATP independent of the reduction of O2. This is the first demonstration of a metabolic pathway involving GS dedicated to ATP synthesis. The phospho-transfer network that is pivotal to the survival of the microorganism under oxidative stress may reveal therapeutic targets against infectious microbes reliant on glutamine for their proliferation.


Archives of Biochemistry and Biophysics | 2016

Phospho-transfer networks and ATP homeostasis in response to an ineffective electron transport chain in Pseudomonas fluorescens

Varun P. Appanna; Azhar Alhasawi; Christopher Auger; Sean C. Thomas; Vasu D. Appanna

Although oxidative stress is known to impede the tricarboxylic acid (TCA) cycle and oxidative phosphorylation, the nutritionally-versatile microbe, Pseudomonas fluorescens has been shown to proliferate in the presence of hydrogen peroxide (H2O2) and nitrosative stress. In this study we demonstrate the phospho-transfer system that enables this organism to generate ATP was similar irrespective of the carbon source utilized. Despite the diminished activities of enzymes involved in the TCA cycle and in the electron transport chain (ETC), the ATP levels did not appear to be significantly affected in the stressed cells. Phospho-transfer networks mediated by acetate kinase (ACK), adenylate kinase (AK), and nucleoside diphosphate kinase (NDPK) are involved in maintaining ATP homeostasis in the oxidatively-challenged cells. This phospho-relay machinery orchestrated by substrate-level phosphorylation is aided by the up-regulation in the activities of such enzymes like phosphoenolpyruvate carboxylase (PEPC), pyruvate orthophosphate dikinase (PPDK), and phosphoenolpyruvate synthase (PEPS). The enhanced production of phosphoenolpyruvate (PEP) and pyruvate further fuel the synthesis of ATP. Taken together, this metabolic reconfiguration enables the organism to fulfill its ATP need in an O2-independent manner by utilizing an intricate phospho-wire module aimed at maximizing the energy potential of PEP with the participation of AMP.


Journal of Biotechnology | 2015

Metabolic reconfigurations aimed at the detoxification of a multi-metal stress in Pseudomonas fluorescens: Implications for the bioremediation of metal pollutants

Azhar Alhasawi; Jacob Costanzi; Christopher Auger; Nishma D. Appanna; Vasu D. Appanna

Although the ability of microbial systems to adapt to the toxic challenge posed by numerous metal pollutants individually has been well documented, there is little detailed information on how bacteria survive in a multiple-metal environment. Here we describe the metabolic reconfiguration invoked by the soil microbe Pseudomonas fluorescens in a medium with millimolar amounts of aluminum (Al), iron (Fe), gallium (Ga), calcium (Ca), and zinc (Zn). While enzymes involved in the production of NADH were decreased, there was a marked increase in enzymatic activities dedicated to NADPH formation. A modified tricarboxylic acid (TCA) cycle coupled to an alternate glyoxylate shunt mediated the synthesis of adenosine triphosphate (ATP) with the concomitant generation of oxalate. This dicarboxylic acid was a key ingredient in the sequestration of the metals that were detoxified as a lipid complex. It appears that the microbe favors this strategy as opposed to a detoxification process aimed at each metal separately. These findings have interesting implications for bioremediation technologies.

Collaboration


Dive into the Azhar Alhasawi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge