Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Azim Mohamedali is active.

Publication


Featured researches published by Azim Mohamedali.


Blood | 2011

Prognostic impact of SNP array karyotyping in myelodysplastic syndromes and related myeloid malignancies

Ramon V. Tiu; Lukasz P. Gondek; Christine L. O'Keefe; Paul Elson; Jungwon Huh; Azim Mohamedali; Austin Kulasekararaj; Anjali S. Advani; Ronald Paquette; Alan F. List; Mikkael A. Sekeres; Michael A. McDevitt; Ghulam J. Mufti; Jaroslaw P. Maciejewski

Single nucleotide polymorphism arrays (SNP-As) have emerged as an important tool in the identification of chromosomal defects undetected by metaphase cytogenetics (MC) in hematologic cancers, offering superior resolution of unbalanced chromosomal defects and acquired copy-neutral loss of heterozygosity. Myelodysplastic syndromes (MDSs) and related cancers share recurrent chromosomal defects and molecular lesions that predict outcomes. We hypothesized that combining SNP-A and MC could improve diagnosis/prognosis and further the molecular characterization of myeloid malignancies. We analyzed MC/SNP-A results from 430 patients (MDS = 250, MDS/myeloproliferative overlap neoplasm = 95, acute myeloid leukemia from MDS = 85). The frequency and clinical significance of genomic aberrations was compared between MC and MC plus SNP-A. Combined MC/SNP-A karyotyping lead to higher diagnostic yield of chromosomal defects (74% vs 44%, P < .0001), compared with MC alone, often through detection of novel lesions in patients with normal/noninformative (54%) and abnormal (62%) MC results. Newly detected SNP-A defects contributed to poorer prognosis for patients stratified by current morphologic and clinical risk schemes. The presence and number of new SNP-A detected lesions are independent predictors of overall and event-free survival. The significant diagnostic and prognostic contributions of SNP-A-detected defects in MDS and related diseases underscore the utility of SNP-A when combined with MC in hematologic malignancies.


British Journal of Haematology | 2013

TP53 mutations in myelodysplastic syndrome are strongly correlated with aberrations of chromosome 5, and correlate with adverse prognosis

Austin Kulasekararaj; Alexander E. Smith; Syed A. Mian; Azim Mohamedali; Pramila Krishnamurthy; Nicholas Lea; Joop Gaken; Coralie Pennaneac'h; Robin Ireland; Barbara Czepulkowski; Sabine Pomplun; Judith Marsh; Ghulam J. Mufti

This study aimed to determine the incidence/prognostic impact of TP53 mutation in 318 myelodysplastic syndrome (MDS) patients, and to correlate the changes to cytogenetics, single nucleotide polymorphism array karyotyping and clinical outcome. The median age was 65 years (17–89 years) and median follow‐up was 45 months [95% confidence interval (CI) 27–62 months]. TP53 mutations occurred in 30 (9·4%) patients, exclusively in isolated del5q (19%) and complex karyotype (CK) with ‐5/5q‐(72%), correlated with International Prognostic Scoring System intermediate‐2/high, TP53 protein expression, higher blast count and leukaemic progression. Patients with mutant TP53 had a paucity of mutations in other genes implicated in myeloid malignancies. Median overall survival of patients with TP53 mutation was shorter than wild‐type (9 versus 66 months, P < 0·001) and it retained significance in multivariable model (Hazard Ratio 3·8, 95%CI 2·3–6·3,P < 0·001). None of the sequentially analysed samples showed a disappearance of the mutant clone or emergence of new clones, suggesting an early occurrence of TP53 mutations. A reduction in mutant clone correlated with response to 5‐azacitidine, however clones increased in non‐responders and persisted at relapse. The adverse impact of TP53 persists after adjustment for cytogenetic risk and is of practical importance in evaluating prognosis. The relatively common occurrence of these mutations in two different prognostic spectrums of MDS, i.e. isolated 5q‐ and CK with ‐5/5q‐, possibly implies two different mechanistic roles for TP53 protein.


Journal of Clinical Oncology | 2009

Novel TET2 Mutations Associated With UPD4q24 in Myelodysplastic Syndrome

Azim Mohamedali; Alexander E. Smith; Joop Gaken; Nicholas Lea; Syed A. Mian; Nigel Westwood; Corinna Strupp; Norbert Gattermann; Ulrich Germing; Ghulam J. Mufti

PURPOSE Cryptic chromosomal aberrations, such as regions of uniparental disomy (UPD), have been shown to harbor homozygous mutations and are a common feature in myelodysplastic syndrome (MDS). We investigated the sequence integrity of 4q24 candidate tumor suppressor gene TET2 in MDS patients with UPD on chromosome 4. PATIENTS AND METHODS The coding exons of TET2 were analyzed by 454 deep sequencing and Sanger sequencing in nine patients with UPD on 4q. Four patients had refractory cytopenia with multilineage dysplasia and ringed sideroblasts (RCMD-RS) and UPD4q24, and five patients (refractory anemia with excess blasts-II, n = 1; 5q- syndrome, n = 1; RCMD-RS, n = 1; refractory anemia, n = 1; refractory cytopenia with multilineage dysplasia, n = 1) had no UPD4q24. RESULTS Mutations on TET2 were identified in all four patients with UPD4q24. These were localized to exons 3, 6, and 9 and resulted in two premature stop codons, one frameshift mutation, and one cysteine to glycine amino acid change. Mutant clone size varied between 30% and 85%. One patient with UPD outside of q24 (UPD4q28.3) displayed additional TET2 mutations, but these were at low clonal levels (13%, 4%, and 4% for a silent mutation, a 180-base pair deletion in exon 3, and a lysine to phenylalanine substitution in exon 11, respectively). The other patients who did not have UPD4q24 did not have verifiable TET2 mutations. CONCLUSION Our data identify novel TET2 mutations in a dominant clone in patients with UPD4q24. The presence of UPD4q24 and mutations in RCMD-RS patients may suggest specificity to this subtype. Our preliminary results need to be confirmed in a large cohort of all MDS subtypes.


Blood | 2014

Somatic mutations identify a subgroup of aplastic anemia patients who progress to myelodysplastic syndrome

Austin Kulasekararaj; Jie Jiang; Alexander E. Smith; Azim Mohamedali; Syed A. Mian; Shreyans Gandhi; Joop Gaken; Barbara Czepulkowski; Judith Marsh; Ghulam J. Mufti

The distinction between acquired aplastic anemia (AA) and hypocellular myelodysplastic syndrome (hMDS) is often difficult, especially nonsevere AA. We postulated that somatic mutations are present in a subset of AA, and predict malignant transformation. From our database, we identified 150 AA patients with no morphological evidence of MDS, who had stored bone marrow (BM) and constitutional DNA. We excluded Fanconi anemia, mutations of telomere maintenance, and a family history of BM failure (BMF) or cancer. The initial cohort of 57 patients was screened for 835 known genes associated with BMF and myeloid cancer; a second cohort of 93 patients was screened for mutations in ASXL1, DNMT3A, BCOR, TET2, and MPL. Somatic mutations were detected in 19% of AA, and included ASXL1 (n = 12), DNMT3A (n = 8) and BCOR (n = 6). Patients with somatic mutations had a longer disease duration (37 vs 8 months, P < .04), and shorter telomere lengths (median length, 0.9 vs 1.1, P < .001), compared with patients without mutations. Somatic mutations in AA patients with a disease duration of >6 months were associated with a 40% risk of transformation to MDS (P < .0002). Nearly one-fifth of AA patients harbor mutations in genes typically seen in myeloid malignancies that predicted for later transformation to MDS.


Blood | 2012

Functional characterization of CD4+ T cells in aplastic anemia

Shahram Kordasti; Judith Marsh; Sufyan Al-Khan; Jie Jiang; Alexander E. Smith; Azim Mohamedali; Pilar Perez Abellan; Caroline Veen; Benedetta Costantini; Austin Kulasekararaj; Nana benson-Quarm; Thomas Seidl; Syed A. Mian; Farzin Farzaneh; Ghulam J. Mufti

The role of CD4(+) T cells in the pathogenesis of aplastic anemia (AA) is not well characterized. We investigate CD4(+) T-cell subsets in AA. Sixty-three patients with acquired AA were studied. Th1 and Th2 cells were significantly higher in AA patients than in healthy donors (HDs; P = .03 and P = .006). Tregs were significantly lower in patients with severe AA than in HDs (P < .001) and patients with non-severe AA (P = .01). Th17 cells were increased in severe AA (P = .02) but normal in non-severe AA. Activated and resting Tregs were reduced in AA (P = .004; P = .01), whereas cytokine-secreting non-Tregs were increased (P = .003). Tregs from AA patients were unable to suppress normal effector T cells. In contrast, AA effector T cells were suppressible by Tregs from HDs. Th1 clonality in AA, investigated by high-throughput sequencing, was greater than in HDs (P = .03). Our results confirm that Th1 and Th2 cells are expanded and Tregs are functionally abnormal in AA. The clonally restricted expansion of Th1 cells is most likely to be antigen-driven, and induces an inflammatory environment, that exacerbate the functional impairment of Tregs, which are reduced in number.


Leukemia | 2006

The JAK2 V617F mutation identifies a subgroup of MDS patients with isolated deletion 5q and a proliferative bone marrow

W Ingram; Nicholas Lea; José Cervera; Ulrich Germing; Pierre Fenaux; Bruno Cassinat; Jean-Jacques Kiladjian; Judit Várkonyi; Petar Antunovic; Nigel Westwood; Matthew Arno; Azim Mohamedali; Joop Gaken; T. Kontou; Barbara Czepulkowski; N A Twine; J Tamaska; J Csomer; S Benedek; Norbert Gattermann; E Zipperer; A. Giagounidis; Zaida Garcia-Casado; Guillermo Sanz; Ghulam J. Mufti

The JAK2 V617F mutation identifies a subgroup of MDS patients with isolated deletion 5q and a proliferative bone marrow


Blood | 2012

Loss of heterozygosity in 7q myeloid disorders: clinical associations and genomic pathogenesis

Andres Jerez; Yuka Sugimoto; Hideki Makishima; Amit Verma; Anna M. Jankowska; Bartlomiej Przychodzen; Valeria Visconte; Ramon V. Tiu; Christine L. O'Keefe; Azim Mohamedali; Austin Kulasekararaj; Andrea Pellagatti; Kathy L. McGraw; Hideki Muramatsu; Alison R. Moliterno; Mikkael A. Sekeres; Michael A. McDevitt; Seiji Kojima; Alan F. List; Jacqueline Boultwood; Ghulam J. Mufti; Jaroslaw P. Maciejewski

Loss of heterozygosity affecting chromosome 7q is common in acute myeloid leukemia and myelodysplastic syndromes, pointing toward the essential role of this region in disease phenotype and clonal evolution. The higher resolution offered by recently developed genomic platforms may be used to establish more precise clinical correlations and identify specific target genes. We analyzed a series of patients with myeloid disorders using recent genomic technologies (1458 by single-nucleotide polymorphism arrays [SNP-A], 226 by next-generation sequencing, and 183 by expression microarrays). Using SNP-A, we identified chromosome 7q loss of heterozygosity segments in 161 of 1458 patients (11%); 26% of chronic myelomonocytic leukemia patients harbored 7q uniparental disomy, of which 41% had a homozygous EZH2 mutation. In addition, we describe an SNP-A-isolated deletion 7 hypocellular myelodysplastic syndrome subset, with a high rate of progression. Using direct and parallel sequencing, we found no recurrent mutations in typically large deletion 7q and monosomy 7 patients. In contrast, we detected a markedly decreased expression of genes included in our SNP-A defined minimally deleted regions. Although a 2-hit model is present in most patients with 7q uniparental disomy and a myeloproliferative phenotype, haplodeficient expression of defined regions of 7q may underlie pathogenesis in patients with deletions and predominant dysplastic features.


Journal of Clinical Oncology | 2012

Topography, clinical, and genomic correlates of 5q myeloid malignancies revisited

Andres Jerez; Lukasz P. Gondek; Anna M. Jankowska; Hideki Makishima; Bartlomiej Przychodzen; Ramon V. Tiu; Christine L. O'Keefe; Azim Mohamedali; Denise Batista; Mikkael A. Sekeres; Michael A. McDevitt; Ghulam J. Mufti; Jaroslaw P. Maciejewski

PURPOSE Interstitial deletions of chromosome 5q are common in acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS), pointing toward the pathogenic role of this region in disease phenotype and clonal evolution. The higher level of resolution of single-nucleotide polymorphism array (SNP-A) karyotyping may be used to find cryptic abnormalities and to precisely define the topographic features of the genomic lesions, allowing for more accurate clinical correlations. PATIENTS AND METHODS We analyzed high-density SNP-A karyotyping at diagnosis for a cohort of 1,155 clinically well-annotated patients with malignant myeloid disorders. results: We identified chromosome 5q deletions in 142 (12%) of 1,155 patients and uniparental disomy segments (UPD) in four (0.35%) of 1,155 patients. Patients with deletions involving the centromeric and telomeric extremes of 5q have a more aggressive disease phenotype and additional chromosomal lesions. Lesions not involving the centromeric or telomeric extremes of 5q are not exclusive to 5q- syndrome but can be associated with other less aggressive forms of MDS. In addition, larger 5q deletions are associated with either del(17p) or UPD17p. In 31 of 33 patients with del(5q) AML, either a deletion involving the centromeric and/or telomeric regions or heterozygous mutations in NPM1 or MAML1 located in 5q35 were present. CONCLUSION Our results suggest that the extent of the affected region on 5q determines clinical characteristics that can be further modified by heterozygous mutations present in the telomeric extreme.


Haematologica | 2013

Spliceosome mutations exhibit specific associations with epigenetic modifiers and proto-oncogenes mutated in myelodysplastic syndrome

Syed A. Mian; Alexander E. Smith; Austin Kulasekararaj; Aytug Kizilors; Azim Mohamedali; Nicholas Lea; Konstantinos Mitsopoulos; Kevin G. Ford; Erick E. Nasser; Thomas Seidl; Ghulam J. Mufti

The recent identification of acquired mutations in key components of the spliceosome machinery strongly implicates abnormalities of mRNA splicing in the pathogenesis of myelodysplastic syndromes. However, questions remain as to how these aberrations functionally combine with the growing list of mutations in genes involved in epigenetic modification and cell signaling/transcription regulation identified in these diseases. In this study, amplicon sequencing was used to perform a mutation screen in 154 myelodysplastic syndrome patients using a 22-gene panel, including commonly mutated spliceosome components (SF3B1, SRSF2, U2AF1, ZRSR2), and a further 18 genes known to be mutated in myeloid cancers. Sequencing of the 22-gene panel revealed that 76% (n=117) of the patients had mutations in at least one of the genes, with 38% (n=59) having splicing gene mutations and 49% (n=75) patients harboring more than one gene mutation. Interestingly, single and specific epigenetic modifier mutations tended to coexist with SF3B1 and SRSF2 mutations (P<0.03). Furthermore, mutations in SF3B1 and SRSF2 were mutually exclusive to TP53 mutations both at diagnosis and at the time of disease transformation. Moreover, mutations in FLT3, NRAS, RUNX1, CCBL and C-KIT were more likely to co-occur with splicing factor mutations generally (P<0.02), and SRSF2 mutants in particular (P<0.003) and were significantly associated with disease transformation (P<0.02). SF3B1 and TP53 mutations had varying impacts on overall survival with hazard ratios of 0.2 (P<0.03, 95% CI, 0.1–0.8) and 2.1 (P<0.04, 95% CI, 1.1–4.4), respectively. Moreover, patients with splicing factor mutations alone had a better overall survival than those with epigenetic modifier mutations, or cell signaling/transcription regulator mutations with and without coexisting mutations of splicing factor genes, with worsening prognosis (P<0.001). These findings suggest that splicing factor mutations are maintained throughout disease evolution with emerging oncogenic mutations adversely affecting patients’ outcome, implicating spliceosome mutations as founder mutations in myelodysplastic syndromes.


Cancer Research | 2007

BCL-2 and Mutant NRAS Interact Physically and Functionally in a Mouse Model of Progressive Myelodysplasia

Nader Omidvar; Scott C. Kogan; Stephanie Beurlet; Carole Le Pogam; Anne Janin; Robert West; Maria-Elena Noguera; Murielle Reboul; Annie Soulié; Christophe Leboeuf; Niclas Setterblad; Dean W. Felsher; Eric Lagasse; Azim Mohamedali; N. Shaun B. Thomas; Pierre Fenaux; Michaela Fontenay; Marika Pla; Ghulam J. Mufti; Irving L. Weissman; Christine Chomienne; Rose Ann Padua

Myelodysplastic syndromes (MDS) are clonal stem cell hematologic disorders that evolve to acute myeloid leukemia (AML) and thus model multistep leukemogenesis. Activating RAS mutations and overexpression of BCL-2 are prognostic features of MDS/AML transformation. Using NRASD12 and BCL-2, we created two distinct models of MDS and AML, where human (h)BCL-2 is conditionally or constitutively expressed. Our novel transplantable in vivo models show that expression of hBCL-2 in a primitive compartment by mouse mammary tumor virus-long terminal repeat results in a disease resembling human MDS, whereas the myeloid MRP8 promoter induces a disease with characteristics of human AML. Expanded leukemic stem cell (Lin(-)/Sca-1(+)/c-Kit(+)) populations and hBCL-2 in the increased RAS-GTP complex within the expanded Sca-1(+) compartment are described in both MDS/AML-like diseases. Furthermore, the oncogenic compartmentalizations provide the proapoptotic versus antiapoptotic mechanisms, by activating extracellular signal-regulated kinase and AKT signaling, in determination of the neoplastic phenotype. When hBCL-2 is switched off with doxycycline in the MDS mice, partial reversal of the phenotype was observed with persistence of bone marrow blasts and tissue infiltration as RAS recruits endogenous mouse (m)BCL-2 to remain active, thus demonstrating the role of the complex in the disease. This represents the first in vivo progression model of MDS/AML dependent on the formation of a BCL-2:RAS-GTP complex. The colocalization of BCL-2 and RAS in the bone marrow of MDS/AML patients offers targeting either oncogene as a therapeutic strategy.

Collaboration


Dive into the Azim Mohamedali's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jie Jiang

King's College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge